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Abstract. We describe an approach to formulating the kinetic master equations of the time evolution of NMR 13 

signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement 14 

(hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-15 

bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the 16 

work given in a recent presentation on this topic to now include enzymes with two or more substrates and various 17 

enzyme reaction mechanisms as classified by Cleland. Using this approach, we can address some pressing 18 

questions in the field from a theoretical standpoint. For example, why does binding of a hyperpolarized substrate 19 

to an enzyme not cause an appreciable loss of the signal from the substrate or product? Why does the concentration 20 

of an unlabelled pool of substrate, for example 12C lactate, cause an increase in the rate of exchange of the 13C 21 

labelled pool? To what extent is the equilibrium position of the reaction perturbed during administration of the 22 

substrate? The formalism gives a full mechanistic understanding of the time courses derived and is of relevance 23 

to ongoing clinical trials using these techniques. 24 

  25 

1 Introduction 26 

Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) are widely employed techniques with far-27 

reaching applications in physics, chemistry, medicine and the life sciences. NMR and MRI provide a wealth of 28 

information from structure elucidation, protein dynamics and metabolic profiling through to disease diagnostics 29 

in oncology, cardiology and neurology among others. The technique’s low sensitivity is one of the primary 30 

concerns in the magnetic resonance community and is often a limiting factor in experiments from solid-state NMR 31 

to medical imaging. Recent work has shown that the sensitivity of NMR experiments can be improved by using 32 

non-equilibrium hyperpolarization techniques such as dissolution dynamic nuclear polarization (dDNP) to boost 33 

signal intensities by many orders of magnitude (Ardenkjaer-Larsen et al., 2003). Such techniques have led to new 34 

applications (Golman et al., 2003; Golman et al., 2006; Keshari and Wilson, 2014) and necessitated the 35 

development of acquisition strategies to exploit the hyperpolarized magnetization in a time efficient manner (Yen 36 

et al., 2009); as well as new tools for signal processing and image reconstruction (Hu et al., 2010). A challenge 37 
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with the interpretation of these recordings is that, unlike radiotracers, hyperpolarized MR is a non-tracer technique 38 

requiring the injection of physiological or even supra-physiological concentrations of substrate.  39 

To date there have been many mathematical methods devised for analyzing the kinetic time courses in 40 

dDNP NMR studies (Zierhut et al., 2010; Hill et al., 2013b; Pagès and Kuchel, 2015; Daniels et al., 2016). 41 

However, until recently there has been little consensus on the best methods for analyzing and then interpreting 42 

reaction kinetics measured therein. A theoretical framework has only recently appeared to fully elucidate the 43 

underlying mechanisms (Kuchel and Shishmarev, 2020). One challenge is that the widely used Bloch-McConnell 44 

equations describe the exchange of magnetization of only the MR active nuclei while the reaction kinetics are 45 

subject to a plethora of molecular interactions in a (bio)chemical milieu. Furthermore, in a typical hyperpolarized 46 

MR experiment the initial injection of a non-tracer concentration of substrate causes the reaction system to be 47 

perturbed from its equilibrium state, or quasi-steady state, and therefore the concentrations of the reactants are 48 

time dependent. In this regard, challenges relate to the description of non-linear kinetics, for example second order 49 

reactions, and the involvement of un-observable (non-labelled) metabolites to the overall kinetics, e.g., enzyme 50 

cofactors, co-substrates and natural abundance 12C-containing metabolites (Hill et al., 2013a); as well as explicit 51 

descriptions of enzyme mechanisms e.g., sequential ordered, sequential random, double displacement (ping-pong) 52 

reactions, and allosteric interactions that occur on an enzyme far from its active site. Enzyme activity is also 53 

influenced by inhibitors that can be competitive, non-competitive, or uncompetitive (Cook and Cleland, 2007; 54 

Cleland, 1967). Mathematical models of enzyme systems should agree with standard descriptions of (bio)chemical 55 

kinetics while remaining capable of describing the time evolution of magnetization that is described by the Bloch-56 

McConnell equations (McConnell, 1958).  57 

Here we address these issues in a stepwise manner, by developing a mechanistic approach that combines 58 

the MR interactions with the chemical and/or enzyme mediated reactions described by the Bloch-McConnell 59 

equations. These equations are grounded in the concept of conservation of mass of the hyperpolarized signal plus 60 

its non-hyperpolarized counterpart and the various products; this was recently highlighted (Kuchel and 61 

Shishmarev, 2020) where the MR visible signal decays to produce an MR invisible one such that the sum is 62 

constant and proportional to the total solute concentration. 63 

 64 

1.1 Basic concepts – sensitivity 65 

We begin addressing the problem by defining the signal-to-noise ratio (SNR) in MR. In its most basic form, 66 

sensitivity is described by the ratio of the signal amplitude divided by the root mean square of the amplitude of 67 

the noise. When a signal 𝑆(𝑡) is detected in the NMR receiver coil that surrounds the sample, the magnitude of 68 

the induced current is a function of: (i) the perturbation of nuclear spin populations from thermal equilibrium 69 

𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡); plus (ii) a random contribution from the noise in the electronic circuitry 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡). Hence: 70 

 71 

𝑆(𝑡) = 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) + 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡)    . (1) 

 72 

The current induced in the coil is time-dependent and proportional to the magnetization that precesses in the x,y-73 

plane. In other words, the signal 𝑆(𝑡) is recorded until decoherence renders 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) undetectable against the 74 
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noise, 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠(𝑡). The latter is mainly attributed to the radiofrequency (RF) circuitry in the probe head and the 75 

preamplifier(s) (e.g., Johnson noise (Johnson, 1928)) of the spectrometer. If the NMR signal (free induction decay; 76 

FID) that is detected in a subsequent experiment is indistinguishable from the first, and the two are added together, 77 

then the signal amplitude (peak area) will scale linearly with the number of added FIDs, 𝑁. The noise associated 78 

with each experiment is random, and assuming its source remains fixed over time, i.e., stationary noise, then the 79 

amplitude scales with the square root of the number of FIDs, 𝑁1/2. Hence signal summation enhances the SNR 80 

of an NMR experiment in proportion to the square root of the number of FIDs. In other words, to achieve an 81 

enhancement by a factor  requires an increase in experiment duration of  2
. Therefore, unavoidably, FID 82 

summation is a slow process and experiments can sometimes take days or weeks to achieve a sufficient SNR from 83 

a sample of a low sensitivity nuclide or one with a long relaxation time. The amount of attainable signal averaging 84 

is constrained when monitoring dynamic processes by NMR spectroscopy; and an inherently good SNR is 85 

required from the outset for a time course experiment. 86 

 87 

1.2 Thermal effects 88 

The usual way to proceed when calculating the NMR response of a spin system to RF pulse sequences 89 

is to solve the ordinary quantum mechanical master equation that describes the evolution of the spin density 90 

operator (Hore et al., 2015). This is the Liouville-von Neumann equation, that has been extended to include non-91 

coherent interactions (predominantly relaxation phenomena) (Ernst et al., 1987): 92 

 93 

𝑑

𝑑𝑡
𝜌 = −𝑖𝐻̂𝜌 − ̂(𝜌 − 𝜌0)    , (2) 

   94 

where 𝐻̂ is the commutation superoperator of the coherent Hamiltonian 𝐻 given by 𝐻̂𝜌 = [𝐻, 𝜌], which contains 95 

information on all spin-spin and field-spin interactions; while ̂ is the relaxation superoperator that describes all 96 

longitudinal (𝑇1) and transverse (𝑇2) relaxation processes, as well as any cross-relaxation or cross-correlation 97 

interactions. Note, that in the interests of reducing clutter in equations (for which the operator context should be 98 

clear) hereafter we have omitted carets denoting operators and only used them to denote superoperators.  99 

Our aim here is to describe the kinetics of exchange between different solutes that contain hyperpolarized 100 

nuclei e.g., A  B, in which the relaxation times are constant. In this quest, the first simplifying assumption that 101 

is worth exploring is that all intermolecular interactions, notably, scalar coupling, dipolar coupling, cross-102 

relaxation and cross-correlation between species A and B can be ignored. This applies to non-interacting solute 103 

molecules in solution in which motional averaging occurs; and we focus on thermal effects on the evolution of 104 

the FID.  105 

The so-called Zeeman polarization term describes the sensitivity of 𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) in Eq. (1) to temperature 106 

and magnetic field in an NMR experiment. Magnetic polarization is described by the equilibrium density operator 107 

𝜌0 that specifies the probability distribution of states. Zeeman polarization corresponds to the magnitude of 108 

normalized longitudinal spin order 𝐼𝑧 that is contained in 𝜌0. Specifically, for an ensemble of spin-½ nuclei this 109 

is given by (Ernst et al., 1987): 110 

 111 
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𝜌0 =
𝑒𝑥𝑝( − ℏ𝐻0/𝑘𝑇)

𝑇𝑟{𝑒𝑥𝑝( − ℏ𝐻0/𝑘𝑇)}
    , (3) 

 112 

where k is the Boltzmann constant and T is the temperature (Kelvin). The Zeeman Hamiltonian 𝐻0 describes the 113 

interaction of the spins with the static magnetic field of magnitude 𝐵0, given by 𝐻0 = 𝜔0𝐼𝑧 , where 𝜔0 is the 114 

Larmor frequency (rad s-1). In the basis of the two eigenstates |𝛼⟩ (“spin-up”) and |𝛽⟩ (“spin-down”), the 115 

equilibrium density operator is written in matrix form as: 116 

 117 

𝜌0 =
1

𝑍
[
𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) 0

0 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇)
]    , (4) 

 118 

where Z is the partition function, given by 𝑍 = ∑ exp(−𝜀𝑖/𝑘𝑇)𝑀
𝑖=1 , and M is the number of states (M = 2 for an I 119 

= ½ nucleus). In the case of a spin-½ system, the partition function is the sum of the populations 𝑍 =120 

𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) + 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇) ≈ 2 when 𝜀𝑖 is very small, as is typically the case at thermal equilibrium 121 

in NMR systems. The Zeeman polarization is proportional to the projection of the spin density operator onto the 122 

angular momentum operator. In other words, it is proportional to the expectation value of ⟨𝐼𝑧⟩, and is given by 123 

(Keeler, 2010): 124 

 125 

⟨𝐼𝑧⟩ = 𝑇𝑟[𝜌0 𝐼𝑧] =
1

2𝑍
[𝑒𝑥𝑝( ℏ𝜔0/2𝑘𝑇) − 𝑒𝑥𝑝( − ℏ𝜔0/2𝑘𝑇)]    . 

(5) 

 126 

Hence, the Zeeman polarization for an ensemble of nuclear spins is the normalized imbalance between the 127 

populations of the |𝛼⟩ and |𝛽⟩ states, 𝑝𝛼 and 𝑝𝛽, respectively; in other words, it is the normalized net population 128 

difference that is given by: 129 

 130 

𝑃 =
𝑝𝛼 − 𝑝𝛽

𝑝𝛼 + 𝑝𝛽

    . (6) 

 131 

This normalization is carried out with respect to the total population of the nuclear ensemble such that 𝑝𝛼 + 𝑝𝛽 =132 

1. Therefore, the bounds on the polarization are −1 < 𝑃 < +1. At room temperature (~298 K), and in a field of 133 

11.75 T (500 MHz for 1H nuclei), the thermal equilibrium Zeeman polarization, 𝑃𝑧,𝑒𝑞, is a mere ~4 × 10-5. Thus, 134 

there is only a tiny population difference between the spin states of a nuclear ensemble that implies inherently 135 

weak polarization. It is this small population imbalance which is manipulated in NMR experiments under thermal 136 

equilibrium conditions. This weak polarization is a consequence of the small difference in energy (~0.1 J mol-1) 137 

between nuclear spin energy levels at room temperature (~2.5 kJ mol-1); and it implies only weak alignment of 138 

nuclear spins in the static magnetic field of all contemporary superconducting magnets. 139 

In the usual quantum mechanical analysis of multiple spin systems, the density operator (that describes 140 

the probability density of states) is normalized to 1, meaning that the summed (total) probability density of all 141 

states is 1. This is expressed mathematically as 𝑇𝑟[𝜌] = 1, where Tr denotes the trace of the matrix (Hore et al., 142 

2015). To describe non-equilibrium reactions in terms of solute concentrations requires a scaled density operator 143 

(Kuhne et al., 1979): 144 
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 145 

𝜎𝑖 = [𝐴𝑖]𝜌𝑖     , (7) 

 146 

where 𝜎𝑖 is now proportional to [Ai]. Differentiation of Eq. (7) leads to: 147 

 148 

𝑑𝜎𝑖

𝑑𝑡
= [𝐴𝑖]

𝑑𝜌𝑖

𝑑𝑡
+

𝑑[𝐴𝑖]

𝑑𝑡
𝜌𝑖     . 

(8) 

 149 

Therefore, it follows that for a system at chemical equilibrium 𝑑[𝐴𝑖]/𝑑𝑡 = 0, so the scaled density operator is 150 

directly proportional to the normalised density operator. For non-equilibrium systems the concentrations are time 151 

dependent viz., 𝑑[𝐴𝑖]/𝑑𝑡 ≠ 0 so the two no longer scale in a straightforward manner. 152 

On the other hand, equilibrium magnetization (𝑀𝑧,𝑒𝑞) is a bulk property that is the net magnetic dipole 153 

moment per unit volume; and is proportional to ⟨𝐼𝑧⟩ where the proportionality factor is 𝑁ℏ𝛾. From Eq. (5) this 154 

yields the expression for the magnetization in terms of magnetic field strength, temperature and number of spins 155 

in the sample (or more specifically in the detection volume of the NMR spectrometer): 156 

 157 

𝑀𝑧,𝑒𝑞 =
𝑁ℏ𝛾

2
𝑡𝑎𝑛ℎ (

ℏ𝛾𝐵0

2𝑘𝑇
)    . 

(9) 

 158 

In the so-called ‘high temperature limit’ (room temperature, in the cases addressed here) Eq. (9) simplifies to: 159 

 160 

𝑀𝑧,𝑒𝑞 =
𝑁ℏ2𝛾2𝐵0

4𝑘𝑇
    . 

(10) 

 161 

In words, ‘thermal magnetization’ is proportional to the magnitude of the external magnetic field strength, 𝐵0, 162 

and is inversely proportional to the temperature, T, while being proportional to the number of spins, N. Therefore, 163 

it is proportional to the concentration [Ai] of the solute that bears the NMR-active nucleus.  164 

  165 

2 Equation of motion – the Bloch equations 166 

In the absence of intermolecular binding (however transient), or scalar couplings, the motion (time 167 

evolution) of magnetizations is described by the Bloch equations. Magnetization is explicitly declared to be 168 

proportional to reactant concentrations [A] and [B], as has recently been discussed (Kuchel and Shishmarev, 169 

2020). To explore this situation, we start with the basic Bloch equations for a single spin-½ ensemble. The 170 

equation describes the time evolution of x, y and z magnetization in the rotating frame, and includes the influence 171 

of chemical shift, RF fields, and transverse (𝑇2) and longitudinal relaxation (𝑇1) time constants. The Bloch 172 

equations in their complete form are described as being inhomogeneous, and they can be written using a matrix 173 

and vectors: 174 

 175 
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  𝑑

𝑑𝑡
[

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = − [

𝑅2 𝛺 −𝜔𝑦

−𝛺 𝑅2 𝜔𝑥

𝜔𝑦 −𝜔𝑥 𝑅1

] [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] + [

0
0

𝑅1𝑀𝑧,𝑒𝑞

]    , (11) 

 176 

where 𝛺 = 𝜔0 − 𝜔𝑅𝐹 is the ‘offset frequency’ in the rotating frame;  𝜔0 (rad s-1) is the Larmor frequency;  𝜔𝑅𝐹  177 

(rad s-1) is the RF frequency;  the x component of the RF field (rad s-1) is 𝜔𝑥 = −𝛾𝐵1 𝑐𝑜𝑠(𝜔𝑅𝐹𝑡 + 𝜑); and the y 178 

component is 𝜔𝑦 = −𝛾𝐵1 𝑠𝑖𝑛(𝜔𝑅𝐹𝑡 + 𝜑), where the magnitude of the field strength is 𝐵1, and the phase of the 179 

wave form relative to an internal reference source is 𝜑. The longitudinal relaxation rate constant is denoted by 180 

𝑅1 = 1/𝑇1; the transverse one by 𝑅2 = 1/𝑇2; and the equilibrium magnetization by M𝑧,𝑒𝑞 . 181 

 Equation (11) is tedious to solve analytically, but it is readily solved numerically (Allard et al., 1998; 182 

Helgstrand et al., 2000). On the other hand, by including the identity operator in the basis set and adding a constant 183 

to the equilibrium magnetization (Levitt and Dibari, 1992), we obtain a much more compliant (to analysis) matrix 184 

equation: 185 

 186 

 𝑑

𝑑𝑡

[
 
 
 
 
𝐸

2
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 

= −

[
 
 
 

0 0 0 0
0 𝑅2 𝛺 −𝜔𝑦

0 −𝛺 𝑅2 𝜔𝑥

−2𝛩 𝜔𝑦 −𝜔𝑥 𝑅1 ]
 
 
 

[
 
 
 
 
𝐸

2
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 

    , (12) 

 187 

where E is equal to 1 and the factor 𝛩 = 𝑅1𝑀𝑧,𝑒𝑞  describes the equilibrium magnetization. 188 

 189 

2.1 Chemical exchange kinetics of systems prior to and at equilibrium – the Bloch-McConnell equations  190 

We can extend the system of equations from describing an ensemble of single spins to two or more 191 

exchanging spins. The system of equations now accounts for the magnetization interaction with the lattice and 192 

exchange via the forward and reverse chemical reactions. These are the Bloch-McConnell equations (McConnell, 193 

1958). 194 

First, consider the rate expressions for a simple bi-directional chemical reaction. The coupled differential 195 

equations describing first-order reaction kinetics of solute A becoming solute B and back again, A    B, are 196 

typically expressed in terms of molar concentrations: 197 

 198 

 
𝑑[𝐴(𝑡)]

𝑑𝑡
= −𝑘1[𝐴(𝑡)] + 𝑘−1[𝐵(𝑡)]    , (13) 

 𝑑[𝐵(𝑡)]

𝑑𝑡
= 𝑘1[𝐴(𝑡)] − 𝑘−1[𝐵(𝑡)]    , 

 

(14) 

  199 

that can be expressed in matrix form: 200 

 201 

 𝑑

𝑑𝑡
[
[𝐴(𝑡)]

[𝐵(𝑡)]
] = [

−𝑘1 𝑘−1

𝑘1 −𝑘−1
] [

[𝐴(𝑡)]

[𝐵(𝑡)]
]    . (15) 
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 202 

The rate constant for the forward reaction is denoted by k1 while for the reverse reaction it is k-1. The time 203 

dependent concentrations are given by [𝐴(𝑡)] and [𝐵(𝑡)]. As required by the fact that this is a closed system, the 204 

equations must conform to the principle of conservation of mass. Specifically, the sum of the rates of change of 205 

[𝐴(𝑡)] and [𝐵(𝑡)] given by 𝑑[𝐴(𝑡)]/𝑑𝑡 + 𝑑[𝐵(𝑡)]/𝑑𝑡, is zero. We return to this point below. In other words, 206 

mass is neither created nor destroyed during the reaction in such a closed system. 207 

For the simplest case of two magnetically active solutes, each possessing a single spin-½ nuclide, in 208 

chemical exchange, A  B, the direct product (a mathematical operation used in quantum mechanics to generate 209 

the necessary combinations of states) of the chemical (solute) space {[𝐴], [𝐵]} and the magnetization vector space 210 

{𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧} for each of A and B is given by: 211 

 212 

 [
1
1
] ⊗ [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] =

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑥
𝐵

𝑀𝑥
𝐵]
 
 
 
 
 
 

    . (16) 

 213 

A new exchange matrix in the basis of the new magnetization space {𝑀𝑥
𝐴, 𝑀𝑦

𝐴, 𝑀𝑧
𝐴,𝑀𝑥

𝐵 , 𝑀𝑦
𝐵 , 𝑀𝑧

𝐵} is calculated by 214 

taking the direct product of the exchange matrix with the identity operator I that is chosen to have the same 215 

dimensions as the magnetization space. The direct product is given by: 216 

 217 

 [
−𝑘1 𝑘−1

𝑘1 −𝑘−1
] ⊗ [

1 0 0
0 1 0
0 0 1

] =

[
 
 
 
 
 
−𝑘1 0 0 𝑘−1 0 0
0 −𝑘1 0 0 𝑘−1 0
0 0 −𝑘1 0 0 𝑘−1

𝑘1 0 0 −𝑘−1 0 0
0 𝑘1 0 0 −𝑘−1 0
0 0 𝑘1 0 0 −𝑘−1]

 
 
 
 
 

    . (17) 

 218 

Likewise, the matrix describing coherent and incoherent magnetization interactions can be recast in a similar 219 

fashion to give: 220 

 221 

 [
1 0
0 1

] ⊗ [

𝑅2 𝛺 −𝜔𝑦

−𝛺 𝑅2 𝜔𝑥

𝜔𝑦 −𝜔𝑥 𝑅1

] =

[
 
 
 
 
 
 

𝑅2
𝐴 Ω𝐴 −𝜔𝑦 0 0 0

−Ω𝐴 𝑅2
𝐴 𝜔𝑥 0 0 0

𝜔𝑦 −𝜔𝑥 𝑅1
𝐴 0 0 0

0 0 0 𝑅2
𝐵 Ω𝐵 −𝜔𝑦

0 0 0 −Ω𝐵 𝑅2
𝐵 𝜔𝑥

0 0 0 𝜔𝑦 −𝜔𝑥 𝑅1
𝐵

]
 
 
 
 
 
 

    . (18) 

 222 

The inhomogeneous form of the Bloch equations can now be constructed to take into account both the coherent 223 

and incoherent interactions, as well as chemical exchange. This yields the inhomogeneous form of the Bloch-224 

McConnell equations, which are written (again in matrix form) as: 225 

 226 
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𝑑

𝑑𝑡

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑥
𝐵

𝑀𝑥
𝐵]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅2

𝐴 + 𝑘1 Ω𝐴 −𝜔𝑦 −𝑘−1 0 0

−Ω𝐴 𝑅2
𝐴 + 𝑘1 𝜔𝑥 0 −𝑘−1 0

𝜔𝑦 −𝜔𝑥 𝑅1
𝐴 + 𝑘1 0 0 −𝑘−1

−𝑘1 0 0 𝑅2
𝐵 + 𝑘−1 Ω𝐵 −𝜔𝑦

0 −𝑘1 0 −Ω𝐵 𝑅2
𝐵 + 𝑘−1 𝜔𝑥

0 0 −𝑘1 𝜔𝑦 −𝜔𝑥 𝑅1
𝐵 + 𝑘−1]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 

+

[
 
 
 
 
 

0
0

𝑅1
𝐴𝑀𝑧,𝑒𝑞

𝐴

0
0

𝑅1
𝐵𝑀𝑧,𝑒𝑞

𝐵 ]
 
 
 
 
 

    , (19) 

 227 

where  𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  denote the respective equilibrium magnetizations (hence the subscript eq). 228 

The inhomogeneous form of the Bloch-McConnell equations can similarly be modified by incorporating 229 

the equilibrium magnetization to create a homogeneous form of this master equation: 230 

 231 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 

𝐸

2
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 0

0
0

−2𝛩𝐴

0
0

−2𝛩𝐵

0
𝑅2

𝐴 + 𝑘1

−Ω𝐴

𝜔𝑦

−𝑘1

0
0

0
Ω𝐴

𝑅2
𝐴 + 𝑘1

−𝜔𝑥

0
−𝑘1

0

0
−𝜔𝑦

𝜔𝑥

𝑅1
𝐴 + 𝑘1

0
0

−𝑘1

0
−𝑘−1

0
0

𝑅2
𝐵 + 𝑘−1

−Ω𝐵

𝜔𝑦

0
0

−𝑘−1

0
Ω𝐵

𝑅2
𝐵 + 𝑘−1

−𝜔𝑥

0
0
0

−𝑘−1
−𝜔𝑦

𝜔𝑥

𝑅1
𝐵 + 𝑘−1]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝐸

2
𝑀𝑥

𝐴

𝑀𝑦
𝐴

𝑀𝑧
𝐴

𝑀𝑥
𝐵

𝑀𝑦
𝐵

𝑀𝑧
𝐵]
 
 
 
 
 
 
 
 

    . (20) 

 232 

Again, the factors 𝛩𝐴 = 𝑅1
𝐴𝑀𝑧,𝑒𝑞

𝐴  and 𝛩𝐵 = 𝑅1
𝐵𝑀𝑧,𝑒𝑞

𝐵  account for the respective equilibrium magnetizations. 233 

 234 

2.1.1 Simulations of thermal kinetics using Eq. (19) 235 

Next, consider Eq. (19) for simulating the evolution of the x, y, and z components of the magnetization of a 236 

‘thermal magnetization’ (non-hyperpolarized) sample. We seek the NMR spectrum that results from a two-site 237 

exchange reaction between solutes A and B, Fig. 1(a), as conventionally observed in room temperature NMR 238 

experiments. 239 

Simulations were performed in MatLab with an initial equilibrium magnetization of 𝐌0 = 𝐌eq =240 

[0. 0, 1.0, 0, 0, 0.8] where 𝑀𝑧,𝑒𝑞
𝐴 = 1.0 and 𝑀𝑧,𝑒𝑞

𝐵 = 0.8 are the respective equilibrium z magnetizations. Chemical 241 

shifts offsets were  A = 10  2  rad s-1 and  B = 10  2  rad s-1. Relaxation rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 =242 

1 𝑠−1 and 𝑅2
𝐴 = 𝑅2

𝐵 = 1 𝑠−1. The influence of an RFy pulse was then calculated with 𝜔𝑥 = −𝛾𝐵1 cos(𝜋 2⁄ ) and 243 

𝜔𝑦 = −𝛾𝐵1 sin(𝜋 2⁄ ) and with a field strength of 1.5 kHz, corresponding to 𝜔𝑦 = −𝛾𝐵1 = −1500 × 2𝜋 rad s−1 244 

and 𝜔𝑥 = 0. For a 90 RF nutation (flip) angle the pulse duration is 𝑡𝑝 = 𝜋 2𝜔𝑦⁄ , which gave a transformed 245 

magnetization vector after the pulse of 𝑀(𝑡) = [0.999, 0.007, 0.000, 0.800, −0.005, 0.000]; this was composed 246 

mostly of 𝑀𝑥
𝐴 + 𝑀𝑥

𝐵 with a residual contribution from 𝑀𝑦
𝐴 + 𝑀𝑦

𝐵 arising from evolution of the chemical shift 247 

during the RF pulse; and a small contribution from 𝑀𝑧
𝐴 + 𝑀𝑧

𝐵 due to return of the magnetization to the equilibrium 248 

state.  249 

The observable signal (the FID, which is a function of time) is proportional to the complex signal 𝑆(𝑡) =250 

𝑀𝑥
𝐴(𝑡) − 𝑖𝑀𝑦

𝐴(𝑡) + 𝑀𝑥
𝐵(𝑡) − 𝑖𝑀𝑦

𝐵(𝑡). Noise was simulated by adding to the FID a normally distributed complex 251 

random vector with mean = 0 and standard deviation (SD) = 0.1. The spectrum 𝑠(𝜔) was then calculated by taking 252 
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the Fourier transform of 𝑆(𝑡). Simulated FIDs 𝑆(𝑡) are shown in Figs. 1(b-e) left panel, the corresponding spectra 253 

𝑠(𝜔) in Figs. 1(b-e) middle panel, and the recovery of the z magnetizations 𝑀𝑧
𝐴(𝑡) and 𝑀𝑧

𝐵(𝑡) are shown in Figs. 254 

1(b-e), right panel. Spectra were simulated for a range of rate constants, where exchange was either absent 𝑘1 =255 

𝑘−1 = 0, Fig. 1(b); or for increasing rates of exchange. Thus, (c) 𝑘1 = 2 𝑠−1, 𝑘−1 = 1 𝑠−1; (d) 𝑘1 = 20 𝑠−1,256 

𝑘−1 = 10 𝑠−1; and (e) 𝑘1 = 2000 𝑠−1, 𝑘−1 = 1000 𝑠−1, corresponding to the slow, intermediate and fast 257 

regimes, respectively.  258 

 

Figure 1 Simulated NMR spectra resulting from a two-site exchange process between thermally polarized solutes, A  

B, shown schematically in (a). Simulated FIDs 𝑆(𝑡) are shown in (b-e) left panel, with corresponding spectra 𝑠(𝜔), middle 

panel, and the recovery of z magnetizations, 𝑀𝑧
𝐴(𝑡) and 𝑀𝑧

𝐵(𝑡), right panel. Spectra were simulated with rate constants, 

(b) 𝑘1 = 𝑘−1 = 0; (c) 𝑘1 = 2 𝑠−1, 𝑘−1 = 1 𝑠−1; (d) 𝑘1 = 20 𝑠−1, 𝑘−1 = 10 𝑠−1; and (e) 𝑘1 = 2000 𝑠−1, 𝑘−1 =

1000 𝑠−1, corresponding to no exchange, slow, intermediate, and fast exchange regimes, respectively. 
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 259 

The equilibrium constant was fixed so that 𝐾 = 𝑘1/𝑘−1 = 2; hence the system was not at chemical 260 

equilibrium at 𝑡 = 0 𝑠. The simulations highlight an important point: In the absence of exchange the Bloch-261 

McConnell equations predict the recovery of the z magnetizations back to their equilibrium values 𝑀𝑧,𝑒𝑞
𝐴  and 𝑀𝑧,𝑒𝑞

𝐵  262 

while under conditions of fast exchange this no longer holds, and a non-equilibrium system will rapidly return to 263 

its chemical equilibrium, not to its thermal equilibrium, within the timescale of the NMR experiment; specifically 264 

within five 𝑇1 values.  265 

 266 

2.2 Describing hyperpolarized kinetics with the Bloch-McConnell equations 267 

We now consider the predictions made by using Eq. (19) when simulating the evolution of the x, y, and 268 

z components of the magnetization of a hyperpolarized sample and the resulting spectrum for a two-site exchange 269 

reaction between solutes A and B. In the previous example the initial condition was 𝑀𝑧
𝐴(0) = 1.0 and 𝑀𝑧

𝐵(0) =270 

0.8. To extend the Bloch-McConnell formalism to be able to predict the dynamics of a hyperpolarized experiment 271 

we recognize that for the same magnitude of noise in the receiver circuit (although this may not be true for a 272 

hyperpolarized sample) the initial hyperpolarized magnetization is given by: 273 

 274 

𝑀𝑧,ℎ𝑦𝑝 = 𝜂𝑀𝑧,𝑒𝑞    , (21) 

 275 

where 𝜂 is the enhancement factor that varies from one hyperpolarization experiment to another. In the case of 276 

dDNP experiments 𝜂  104 is typical, although this depends on the method of hyperpolarization, the solute(s) in 277 

question and a set of physicochemical parameters that are described in detail in e.g., (Ardenkjaer-Larsen et al., 278 

2015). 279 

 280 

2.2.1 Simulations of hyperpolarized kinetics using Eq. (19) 281 

These were performed with an initial magnetization vector 𝐌(0) = [0. 0, 1.0 × 104, 0, 0, 0] while the 282 

equilibrium magnetizations were 𝑀𝑧,𝑒𝑞
𝐴 = 1.0 and 𝑀𝑧,𝑒𝑞

𝐵 = 0.8, as used  above. This situation corresponds to an 283 

initial hyperpolarized magnetization 𝑀𝑧,ℎ𝑦𝑝
𝐴 (0) of only solute A. Chemical shifts were Ω𝐴 = 10 × 2𝜋 rad s−1 and 284 

Ω𝐵 = −10 × 2𝜋 rad s−1, while relaxation times were increased to represent a hyperpolarized 13C substrate, 𝑅1𝐴 =285 

𝑅1𝐵 = 1/60𝑠−1 and 𝑅2𝐴 = 𝑅2𝐵 = 1 𝑠−1 with the rate constants representing an enzyme mediated cell reaction 286 

𝑘1 = 𝑘−1 = 0.005 𝑠−1. Figure 2(a) shows the time evolution of the z-components of the magnetization, displaying 287 

the familiar (Day et al., 2007) bi-exponential time dependence of 𝑀𝑧,ℎ𝑦𝑝
𝐴 (𝑡) and 𝑀𝑧,ℎ𝑦𝑝

𝐵 (𝑡) magnetizations.  288 

We next simulate the effect of applying the pulse sequence shown in Fig. 2(b) corresponding to a time 289 

course type of experiment with multiple sampling of the magnetization and acquisition of an FID at each time-290 

point. This is representative of real experiments that have been presented in the literature (Gabellieri et al., 2008; 291 

Hill et al., 2013b). The time delays correspond to a pre-scan delay , the duration of the pulse 𝑡𝑝 and the duration 292 

of the FID 𝑡𝑎𝑞. The experiment is repeated n times to sample the entire time course where the temporal resolution 293 

is then given by the total repetition time 𝑇𝑅 = 𝜏 + 𝑡𝑝 + 𝑡𝑎𝑞  and the total duration of the experiment is given by 294 

https://doi.org/10.5194/mr-2021-14

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 16 February 2021
c© Author(s) 2021. CC BY 4.0 License.



11 
 

𝑛𝑇𝑅. In this experiment we make the assumption that the transverse magnetization from one experiment to the 295 

next is not recovered by the application of a subsequent pulse. This assumption is reasonable provided the 296 

acquisition time is much longer that the time taken for the FID to decay to zero, namely, 𝑡𝑎𝑞 ≫ 𝑇2
∗. 297 

The influence of this pulse sequence was then calculated, accounting for multiple sampling of the 298 

magnetization. The RF pulse was again specified by 𝜔𝑥 = −𝛾𝐵1 cos(𝜋 2⁄ ) and 𝜔𝑦 = −𝛾𝐵1 sin(𝜋 2⁄ ) with a field 299 

strength of 1.5 kHz, which corresponds to 𝜔𝑦 = −𝛾𝐵1 = −1500 × 2𝜋 rad s−1. Application of an RF pulse tilts 300 

the hyperpolarized magnetization away from the z axis by an angle of  radians. The magnitude of the observable 301 

transverse magnetization is proportional to sin(), and the remaining longitudinal magnetization is proportional 302 

to cos().  303 

Simulations were performed with the same magnitude of noise as in Fig. 1. The time evolution of the 304 

magnetization was recorded for the pulse sequence shown in Fig. 2(b) with sequential acquisition of 64 spectra, 305 

and a repetition time of 𝑇𝑅 = 4.25 s. The effect of acquiring a time series of spectra with either a flip angle  = 306 

 

Figure 2 (a) Simulated evolution of the z-components of the magnetization 𝑀𝑧
𝐴 and 𝑀𝑧

𝐵 for a hyperpolarized solute 

𝑀𝑧
𝐴(0) = 1 × 104 undergoing a two-site exchange reaction, A  B. Longitudinal relaxation rate constants were 𝑅1𝐴 =

𝑅1𝐵 = 1/60𝑠−1 and 𝑅2𝐴 = 𝑅2𝐵 = 1 𝑠−1. Rate constants were 𝑘1 = 𝑘−1 = 0.005 𝑠−1. (b) Simple pulse sequence for 

acquiring a time course experiment with multiple sampling of the magnetization and acquisition of an FID at each 

timepoint. (c-d) Waterfall plots of simulated spectra resulting from sequential application of the pulse sequence in (b) for 

an initial hyperpolarized solute A undergoing two-site exchange with solute B, calculated with a flip angles: (c)  = 1; 

and (d)  = 20.  
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1, Fig. 2(c), or  = 20, Fig. 2(d), are seen in the stack plots. The pulse length (duration) was 𝑡𝑝 = 𝛽 𝜋 180𝜔𝑦⁄ . 307 

After a single  = 1 pulse applied to 𝐌(0) the magnetization vector was tilted to become 𝐌(𝑡) =308 

[0.174, 0.000, 9.998, 0.000, 0.000, 0.000] × 103 prior to acquisition of the FID. This was composed mostly of 309 

𝑀𝑧
𝐴 with a small contribution from 𝑀𝑥

𝐴 that arose from excitation by the  = 1 pulse; or following a  = 20 pulse 310 

the magnetization vector was tilted to become 𝐌(𝑡) = [3.420, 0.004, 9.397, 0.000, 0.000, 0.000] × 103, again 311 

comprised mostly of 𝑀𝑧
𝐴 but with a greater contribution from 𝑀𝑥

𝐴 due to excitation by a pulse with larger value of 312 

. Since the magnetization relaxed to its thermal equilibrium state, the hyperpolarized magnetization was 313 

effectively destroyed during application of the RF (sampling) pulse, and it was not re-generated. This may not be 314 

the outcome when non-linear effects such as radiation damping cause recovery of the hyperpolarized signal 315 

(Weber et al., 2019). 316 

The z magnetization after the application of a single RF pulse and delay 𝑇𝑅 is therefore given by:  317 

 318 

 𝑆(𝑇𝑅) = 𝑆(0) 𝑐𝑜𝑠( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑇𝑅)    . (22) 

 319 

Following the application of a series of 𝑛 RF pulses with a total delay 𝑛 𝑇𝑅 = 𝑡 the signal is given by (Kuchel 320 

and Shishmarev, 2020):  321 

 322 

 𝑆(𝑡) = 𝑆(0) 𝑐𝑜𝑠𝑛( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑡)    . (23) 

 323 

The apparent relaxation time constant of the hyperpolarized signal, including the influence of both the intrinsic 324 

𝑇1 and flip angle correction, is given by (Hill et al., 2013b; Kuchel and Shishmarev, 2020): 325 

 326 

 𝑒𝑥𝑝(−𝑅1,𝑎𝑝𝑝𝑡) = 𝑐𝑜𝑠𝑛( 𝜃) 𝑒𝑥𝑝(−𝑅1𝑡)    , (24) 

 

 

𝑅1,𝑎𝑝𝑝 = 𝑅1 −
1

𝑇𝑅
𝑙𝑛 𝑐𝑜𝑠( 𝜃)    . 

(25) 

 327 

In the previous examples in Figs. 2(c) and 2(d), with a typical 𝑇1 = 60 𝑠 (Keshari and Wilson, 2014) 328 

corresponding to 𝑅1 = 1.67 × 10−2 s−1 and a 𝑇𝑅 = 4.25 s, the flip angle correction for a  = 1° pulse was 3.58 329 

 10-5, which ‘for all intents and purposes’, is negligible, giving 𝑅1,𝑎𝑝𝑝 = 1.67 × 10−2 s−1
 and 𝑇1,𝑎𝑝𝑝 = 59.87 s. 330 

Hence, the time dependence of the signal shown in Fig. 2(c) is a robust reflection of the 𝑀𝑧(𝑡) seen in Fig. 2(a). 331 

For  = 20° the flip angle correction was 1.46  10-2 giving 𝑅1,𝑎𝑝𝑝 = 3.13 × 10−2 s−1
 and 𝑇1,𝑎𝑝𝑝 = 31.95 s. 332 

Therefore, for the larger flip angle there was a tradeoff between the increased sensitivity and the corresponding 333 

reduction in 𝑇1,𝑎𝑝𝑝 with the more rapid decay of the NMR signal. The time dependence seen in Fig. 2(d) is no 334 

longer a good reflection of the 𝑀𝑧(𝑡) shown in Fig. 2(a). We conclude that when the RF flip angle is small, < 1°, 335 

and the magnetization is sampled many times, the flip angle correction is negligible; accordingly, it is ignored in 336 

the next sections. 337 

 338 
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3 Relaxation of hyperpolarized magnetization in 13C substrates 339 

  We now take a detour into relaxation theory to give an overview of the factors that determine the values 340 

of 𝑅1 = 1/𝑇1 of hyperpolarized 13C solutes in a (bio)chemical system taking into account the main relaxation 341 

mechanisms responsible for the decay of the nuclear magnetization in solution state at temperatures between ~20 342 

to 180°C and static magnetic field strengths between 1 mT to 23.5 T. The spin interactions discussed here are 343 

relevant to the outcome of numerous dissolution-dynamic nuclear polarization (dDNP) experiments. 344 

A master equation for spin systems far from equilibrium based on a Lindblad dissipator formalism has 345 

recently been presented and shown to correctly predict the spin dynamics of hyperpolarized systems (Bengs and 346 

Levitt, 2020). In brief, Eq. (2) is only valid for the high temperature limit and weak order approximation of a spin 347 

system at thermal equilibrium, and therefore the theory accounts for a dependence of relaxation rate constants on 348 

the extent of hyperpolarization. However, we do not pursue this line of enquiry here because for the enzyme 349 

systems studied thus far with dDNP a constant value of T1 has been statistically satisfactory in regression analyses 350 

of the data (Pages et al., 2013; Shishmarev et al., 2018b). 351 

Once a sufficiently high level of nuclear spin polarization has been achieved by implementing dDNP 352 

methodologies (often for 13C nuclei PC > 60%) a jet of superheated solvent (e.g., H2O and/or D2O at 150-180°C) 353 

is injected directly onto the hyperpolarized sample (Ardenkjaer-Larsen et al., 2003; Wolber et al., 2004). Upon 354 

contact with the warm solvent, the frozen sample rapidly dissolves and is then transferred under the pressure of 355 

helium gas (6-9 bar) to a separate NMR/MRI spectrometer for the detection of hyperpolarized MRS signals, or to 356 

a collection/quality control point for use in biological applications (Comment and Merritt, 2014). There are several 357 

potential issues related to spin relaxation during these processes; and we focus on nuclear spin relaxation in 358 

solution during the sample transfer stage (i.e., subject to changes in magnetic field strength) or situations where a 359 

solute has an altered rotational correlation time (i.e., dependence on temperature or when bound to a protein). This 360 

requires an understanding of the (potentially) large variety of molecular interactions that give rise to nuclear spin 361 

relaxation. 362 

Dipole-Dipole Couplings (DD). The dominant mechanism for the relaxation of nuclear spin 363 

magnetization is often the stochastic modulation of dipole-dipole interactions (couplings) to other nuclei, either 364 

in the same molecule or other molecules, including the solvent, as the molecule re-orientates in solution by 365 

molecular tumbling. 366 

Chemical Shift Anisotropy (CSA). Nuclear spins resonate at different frequencies depending on the 367 

chemical shielding imparted by the local electronic environment and its orientation (a tensor property). The 368 

modulation of the chemical shift tensor by molecular tumbling in solution has a quadratic dependence on the 369 

strength of the static magnetic field and therefore increases markedly with B0 (Kowalewski and Maler, 2019). 370 

Paramagnetic Sites. Dissolved paramagnetic solutes (often impurities, but they can be purposely added 371 

as required by the experimental design), such as radical agents that remain in the dissolution solvent, molecular 372 

oxygen, and metal ions, which can be deleterious to the nuclear-spin relaxation, particularly in regions of low 373 

magnetic field (Pell et al., 2019; Blumberg, 1960). However, all species can be easily scavenged by co-dissolving 374 

chelating agents in the dissolution medium (Mieville et al., 2010). 375 

Scalar Relaxation of the Second Kind. This mechanism operates when the nuclei of interest have scalar 376 

couplings to neighbouring nuclei that also relax rapidly (Pileio, 2011; Kubica et al., 2014; Elliott et al., 2019). In 377 
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dDNP NMR experiments this relaxation mechanism is often enhanced during sample transfer steps through areas 378 

of low magnetic field (Chiavazza et al., 2013; Kubica et al., 2014). 379 

Spin Rotation. The coupling of nuclear magnetization to that of a whole molecule or to mobile parts of 380 

a molecule, e.g., methyl groups, can act as an efficient relaxation mechanism. This mechanism has an unusual 381 

dependence on temperature with the relaxation rate usually increasing at higher temperatures (Matson, 1977). 382 

Quadrupolar. Many molecules of interest in dDNP experiments contain either 2H or 14N nuclei. NMR 383 

relaxation times of such nuclei are often <1 s, and therefore not sufficiently long to be relevant for dDNP 384 

experiments. However, there are two notable exceptions in 6Li+ and 133Cs+ which have small nuclear quadrupole 385 

moments and therefore have intrinsically long T1 values (van Heeswijk et al., 2009; Kuchel et al., 2019). 386 

 Derivations of relaxation rate expressions are well established and based on plausible physical models. 387 

For simplicity, we skip the majority of these since they are comprehensively presented by several authors 388 

(Kowalewski and Maler, 2019), and instead we focus on the main results of their analyses. Assuming a two spin 389 

system composed of a 13C and 1H, equations for the 13C-1H dipole-dipole and the 13C CSA contributions to the 390 

13C longitudinal relaxation rate constant (R1) are given by Keeler (Keeler, 2010): 391 

 392 

𝑅1,𝐷𝐷 = 𝑏𝐻𝐶
2 [

3

20
𝐽(𝜔𝐶) +

1

20
𝐽(𝜔𝐻 − 𝜔𝐶) +

3

10
𝐽(𝜔𝐻 + 𝜔𝐶)]    ,  (26) 393 

 394 

𝑅1,𝐶𝑆𝐴 = 𝑐2 [
1

15
𝐽(𝜔𝐶)]    ,     (27) 395 

 396 

where 𝑏𝐻𝐶  is the dipole-dipole coupling constant, defined as: 397 

 398 

𝑏𝐻𝐶 =
𝜇0𝛾𝐻𝛾𝐶ℏ

4𝜋𝑟𝐻𝐶
3     ,      (28) 399 

 400 

and c is the magnitude of the CSA assuming an axially symmetric(al) tensor given by: 401 

 402 

𝑐 = 𝛾𝐶𝐵0(𝜎∥ − 𝜎⊥)    ,     (29) 403 

 404 

where 𝛾𝐻 and 𝛾𝐶 are the magnetogyric ratios of the 1H and 13C spins, respectively, rHC is the internuclear distance 405 

between the 1H and 13C atoms and 𝜎∥ and 𝜎⊥ are the parallel and perpendicular components of the axially 406 

symmetric(al) CSA tensor, respectively.  407 

The so-called spectral density function that is a function of the Larmor frequency, 𝜔, is: 408 

 409 

𝐽(𝜔) =
2𝜏𝑐

1+𝜔2𝜏𝑐
2    ,      (30) 410 

 411 

where 𝜏𝑐 is the rotational correlation time (tumbling motion) of the re-orientating spin-bearing molecule in 412 

solution. The overall longitudinal relaxation rate constant is the sum of these two dominant contributions and is 413 

given by: 414 

𝑅1 = 𝑅1,𝐷𝐷 + 𝑅1,𝐶𝑆𝐴    .     (31) 415 
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3.1 Relaxation Analysis 416 

It is important (for experimental design purposes) to note the influence that a nearby 1H spin has on the 417 

13C nuclear T1. Figure 3(a) shows the calculated 13C T1 for a fixed rotational correlation time of 𝜏𝑐 = 0.4 × 10-11 s 418 

(previously reported for glycine in saline at 310 K (Endre et al., 1983)), 13C CSA 𝜎∥ − 𝜎⊥ = −98ppm (previously 419 

reported for phosphoenolpyruvate (Bechmann et al., 2004)) and a magnetic field strength of B0 = 7 T as a function 420 

of the 1H-13C internuclear distance rHC. Biaxality of the CSA interaction has been ignored here. A rapid rise occurs 421 

in T1 as the 1H-13C internuclear separation increases. In the case of rHC = 1.09 Å, which is typical of a 1H-13C 422 

single bond, the 13C nuclear T1 is predicted to be ~11.4 s. The 1H-13C dipole-dipole coupling constant scales with 423 

𝑟𝐻𝐶
−3, consequently, the presence of a directly bonded proton significantly shortens the relaxation time constant of 424 

the 13C magnetization. Small molecules containing 13C atoms that do not have directly bonded 1H, or at least 1H 425 

spins located at significant internuclear distances, are required. Such moieties include the carboxyl group that is 426 

present in many low molecular weight metabolites such as pyruvate, lactate, and methylglyoxal (Shishmarev et 427 

al., 2018a). At the longer 1H-13C internuclear distance of 1.45 Å, implying a 1H-13C dipole-dipole coupling 428 

constant of 𝑏𝐻𝐶/2𝜋 = −10.2 kHz, a 13C nuclear T1 of ~60 s is predicted. At very long distances, the 13C relaxation 429 

time constant will tend to that of the CSA relaxation contribution alone. 430 

 431 

The dependence of R1 on temperature and molecular size (e.g., due to binding) scales with the rotational 432 

correlation time. Figure 3(b) shows the dependence of the 13C nuclear T1 (1/R1) as a function of 𝜏𝑐 and B0 for this 433 

2-spin-1/2 system with rHC = 1.45 Å and 𝜎∥ − 𝜎⊥ = −98 ppm. In the extreme narrow limit, i.e., 𝜔2𝜏𝑐
2 ≪ 1, the 434 

following familiar equations describe the relaxation of 13C spins under the dipole-dipole and CSA relaxation 435 

mechanisms (Kowalewski and Maler, 2019): 436 

 437 

𝑅1,𝐷𝐷 = 𝑏𝐻𝐶
2 𝜏𝑐     ,      (32) 438 

𝑅1,𝐶𝑆𝐴 =
2

15
𝑐2𝜏𝑐     .     (33) 439 

 

Figure 3 (a) Simulation of the 13C nuclear T1 for a two-spin 1H-13C system as a function of the internuclear distance (rHC) 

with a rotational correlation time 𝜏𝑐 = 0.4 × 10−11 s, 13C CSA 𝜎∥ − 𝜎⊥ = −98ppm and at a magnetic field strength B 

= 7 T. (b) Dependence of the 13C nuclear T1 as a function of the magnetic field B and the rotational correlation time 𝜏𝑐 . 
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In the extreme narrowing regime the 13C nuclear T1 becomes shorter with increasing magnetic field strength due 440 

to the B0
2 dependence of R1,CSA. At low field strengths, the magnitude of T1 will mostly be attributed to dipole-441 

dipole relaxation with the nearby 1H spin. It is also worth noting that the 13C T1 follows the usual Lorentzian 442 

spectral density functional dependence on the rotational correlation time. This is clearly seen at high magnetic 443 

field. 444 

 445 

3.2 Molecular Considerations 446 

 The majority of dDNP experiments used to study biological systems employ H2O/D2O as the dissolution 447 

solvent. Detection of hyperpolarized NMR/MRI signals typically occurs in a magnetic field range of 1.5-9.4 T, 448 

thus Fig. 3(b) indicates a 13C nuclear T1 of the order of ~60 s for a carbonyl group, and this is commonly seen in 449 

practice (Shishmarev et al., 2018a). It is important to remember that Eqs. (26-31) provide a greatly simplified 450 

picture of the problem in hand; in reality there are many magnetic nuclei (often within the same molecule) which 451 

contribute to the relaxation of 13C magnetization. The additional dipole-dipole interactions are likely to be 452 

responsible for differences between predicted and measured 13C relaxation times, along with the other (more 453 

exotic) signal attenuation mechanisms that are described above. 454 

In a dDNP experiment the dissolution and transfer process can take as long as 15 s; it depends on the 455 

distance to the point of use from the polarizing source; and in clinical applications an additional 30 s can easily 456 

be added for quality control processes. Such requirements place a bound on the usable time in which 457 

hyperpolarized 13C magnetization must be maintained; and it is typical to expect 45 s to be this limit. Given that 458 

the magnetic field strength “felt” by the hyperpolarized sample can be controlled (to a reasonable extent) 459 

throughout its voyage between the dDNP polarizer and the point of use (Milani et al., 2015), the rotational 460 

correlation time becomes the most important factor that impacts upon the 13C nuclear T1. Figure 3(b) indicates 461 

that even for a rotational correlation time on the order of 𝜏𝑐 = 1 × 10-10 s, such as found in proteins in solution 462 

(Wilbur et al., 1976), Eq. (26-31) yields 13C nuclear T1 relaxation times which are too short to allow practical use 463 

of such samples, i.e., 5 × T1 ≪ 45 s, in comparison to the overall time required by a dDNP experiment. 464 

A major parameter that controls the magnitude of the rotational correlation time of a spin-bearing 465 

molecule is its molecular weight (Mw). Since 𝜏𝑐 ∝ Mw the rotational correlation time has a noticeable impact on 466 

the 13C nuclear T1 with even the smallest increase in molecular weight. In order to achieve 13C nuclear T1 relaxation 467 

times that are sufficiently long to enable hyperpolarized 13C magnetization to survive the dissolution and transfer 468 

process the 13C NMR signals must be detectable above the spectral noise for ~45 s. Hence, dDNP samples used 469 

in biological experiments are currently restricted to small molecules (or ions (Kuchel et al., 2019; van Heeswijk 470 

et al., 2009)). For example, the estimate of ~60 s for the 13C nuclear T1 of the model system described above was 471 

predicted with a rotational correlation time of 𝜏𝑐 = 0.4 × 10-11 (Endre et al., 1983), and this is sufficiently long for 472 

dDNP experiments. 473 

 474 

  475 
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3.3 Enzyme Binding 476 

The worst-case scenario for the model system described in Fig. 3(b) would be a moderate rotational 477 

correlation time of the order of 𝜏𝑐 = 1 × 10-8 - 1 × 10-10 s for which 13C nuclear T1 relaxation times in the millisecond 478 

regime are predicted. Such correlation times correspond to a system with a molecular weight comparable to that 479 

of an enzyme. If the small molecule (ligand) or ion becomes bound to the enzyme, then it will assume the rotational 480 

correlation time of the higher mass binding partner. In the case of 𝜏𝑐 = 1 × 10-9 for an enzyme-ligand complex, a 481 

13C substrate will have a predicted nuclear T1 of ~276.4 ms at a static magnetic field strength of 7 T. Such a stark 482 

variation in 13C nuclear T1 values provides good contrast in relaxation-based ligand-protein binding experiments 483 

(Valensin et al., 1982). 484 

 485 

4 Mechanistic description of reaction kinetics of hyperpolarized substrates 486 

We now consider the interpretation of hyperpolarized dynamics for complex chemical reactions. To help 487 

tease apart the key features of the analysis we begin with some simplifying assumptions. First, in the absence of 488 

an RF pulse Eq. (20) becomes block diagonal, since transverse and longitudinal magnetization are not 489 

interconverted. The evolution of the z magnetization is then dependent only on the initial conditions, 𝑇1, and the 490 

rate constants that characterize the chemical exchange. Second, we assume that the z magnetization is sampled 491 

many times with an infinitesimally small flip angle (<<1)  so the longitudinal magnetization decays with its 492 

intrinsic 𝑇1  value rather than an apparent 𝑇1,𝑎𝑝𝑝 value. Finally, the hyperpolarized magnetization decays to zero, 493 

i.e., the enhancement factor 𝜂 (Eq. (21)) is such that M0 is greater than Meq by many orders of magnitude. Thus, 494 

the equilibrium magnetization at t = ∞ is effectively zero and it can be ignored in the analysis of real experimental 495 

data. 496 

To reduce clutter in the equations, for all the discussions that now follows, we drop the subscript z since 497 

we hereafter deal only with longitudinal magnetization and denote 𝑀𝑧,ℎ𝑦𝑝
𝐴  and 𝑀𝑧,ℎ𝑦𝑝

𝐵  as 𝐴∗(𝑡) and 𝐵∗(𝑡) 498 

corresponding to hyperpolarized magnetization (identified with an asterisk *). 499 

 500 

4.1 Simple first order exchange kinetics of hyperpolarized substrates 501 

Confining our analysis to the physical subspace that is composed of longitudinal magnetizations, which 502 

describe first-order kinetics of a two-site exchange reaction of hyperpolarized substrates, A*  B*, Eq. (20) 503 

simplifies to: 504 

 505 

𝑑

𝑑𝑡
[
𝐴∗(𝑡)

𝐵∗(𝑡)
] = [

−𝑘1 − 𝑅1
𝐴 𝑘−1

𝑘1 −𝑘−1 − 𝑅1
𝐵] [

𝐴∗(𝑡)

𝐵∗(𝑡)
]    . (34) 

 506 

Equivalently, Eq. (34) can be expanded to give: 

 

𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐴

∗(𝑡) + 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , 

 

(35) 
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𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐴

∗(𝑡) − 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , 
 

(36) 

 507 

where 𝑘1 and 𝑘−1 denote first-order rate constants, and 𝑅1
𝐴 = 1/𝑇1

𝐴 and 𝑅1
𝐵 = 1/𝑇1

𝐵 are the longitudinal relaxation 508 

rate constants of A and B, respectively. 509 

 Since Eqs. (35) and (36) describe the time evolution of the z magnetizations (that is proportional to 510 

concentration/mass) they do not satisfy the conservation of mass requirement because 𝑑[𝐴∗(𝑡) + 𝐵∗(𝑡)]/𝑑𝑡 =511 

 −𝑅1
𝐴𝐴∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡) and this tends to zero with time. However, the equations can be recast to specify that the 512 

pools of hyperpolarized substrates relax to form pools of non-polarized substrates A  B. These pools are denoted 513 

simply by 𝐴(𝑡) and 𝐵(𝑡) (without the asterisks) as shown in Fig. 4(a). The analogy with radioactive tracers is a 514 

useful one here. A ‘hot’ pool of radioactive material decays with first order kinetics (half-life) to form a ‘cold’ 515 

pool of non-radioactive material with the sum of ‘hot’ and ‘cold’ being constant.   516 

The kinetics of the non-polarized pools are described by: 517 

 518 

𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐴(𝑡) + 𝑘−1𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (37) 

 

𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐴(𝑡) − 𝑘−1𝐵(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    . 

 

(38) 

 519 

Equations (37) and (38) now satisfy conservation of mass, since the rate of change 𝑑[𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) +520 

𝐵(𝑡)]/𝑑𝑡  is always zero. Note that 𝐴(𝑡) and 𝐵(𝑡) are not observed in the dDNP NMR experiment; but they are 521 

the counterparts of real concentrations of solute that would be assayable (bio)chemically.  522 

Equations (35-38) can be written as: 523 

 524 

 𝑑

𝑑𝑡
[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

] =

[
 
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0

𝑘1 −𝑘−1 − 𝑅1
𝐵 0 0

𝑅1
𝐴 0 −𝑘1 𝑘−1

0 𝑅1
𝐵 𝑘1 −𝑘−1]

 
 
 
 

[

𝐴∗(𝑡)

𝐵∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

]    . (39) 

 525 

We can now appreciate the equivalence between this formalism and conventional chemical reaction kinetics that 526 

are written in terms of molecular concentrations. Furthermore, Eq. (39) can be rewritten as: 527 

 528 

 𝑑

𝑑𝑡
[
𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)
] = [

−𝑘1 𝑘−1

𝑘1 −𝑘−1
] [

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)
]    , (40) 

 529 

thereby recapturing the conventional form of chemical reaction kinetics for a closed system. Therefore, 𝐴∗(𝑡) +530 

𝐴(𝑡) and 𝐵∗(𝑡) + 𝐵(𝑡) are proportional to [A(t)] and [B(t)], respectively, where the constant of proportionality 531 

depends on the initial experimental conditions, viz., [𝐴]0 and [𝐵]0. In other words, provided 𝐴∗(0) + 𝐴(0) = [𝐴]0 532 

and 𝐵∗(0) + 𝐵(0) = [𝐵]0 then the constant of proportionality is 1 and we can equate 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)] and 533 

𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)]. This is a crucial point that we return to below.   534 
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 Figure 4 shows numerical simulations of the time evolution of the system described by Eq. (39) with an 535 

initial magnetization vector 𝐌(0) = [1, 0, 0, 0] that corresponds to only hyperpolarized 𝐴∗(0) = 1 and 536 

longitudinal relaxation rate constants 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) 537 

were calculated numerically (left panel) for different rate constants: Fig. 4(b), k1 = 0.01 s-1, k-1 = 0 s-1, 538 

 

Figure 4 Simulated first order two-site exchange kinetics of hyperpolarized solutes, A  B, conforming to conservation 

of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation rate constants 

were 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) (left panel) were calculated numerically 

using Eq. (35-38) with rate constants (b) k1 = 0.01 s-1, k-1 = 0 s-1, corresponding to uni-directional kinetics, (c) k1 = 0.01 s-

1, k-1 = 0.005 s-1 and (d) k1 = 0.01 s-1, k-1 = 0.01 s-1, corresponding to exchange kinetics. The right panel shows plots of the 

time dependence of 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)] and 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)]. 
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corresponding to a uni-directional reaction; Fig 4(c), k1 = 0.01 s-1, k-1 = 0.005 s-1, corresponding to bi-directional 539 

exchange with an equilibrium constant K = 2; and Fig. 4(d), k1 = 0.01 s-1, k-1 = 0.01 s-1, also corresponding to bi-540 

directional exchange with an equilibrium constant K = 1. The right column shows plots of the time dependence 541 

of 𝐴∗(𝑡) + 𝐴(𝑡) and 𝐵∗(𝑡) + 𝐵(𝑡) that reproduce conventional kinetics of [𝐴(𝑡)] and [𝐵(𝑡)], as required for 542 

mathematical and physical consistency.  543 

 The approach used here (as laid out in (Kuchel and Shishmarev, 2020)) enables us to create systems of 544 

differential equations that satisfy conservation of mass and therefore allow a study of the influence of non-545 

hyperpolarized pools of substrates on reaction kinetics. The approach enables more complicated reaction 546 

mechanisms to be described to allow the inclusion of MR invisible pools of substrates such as 12C, which are 547 

known to affect the outcome of dDNP experiments in vivo. We consider some of these scenarios next. 548 

 549 

4.2 Sequential reaction kinetics of hyperpolarized substrates 550 

Equation 39 can be extended to compartmental models of arbitrary complexity: Consider a reaction scheme 551 

involving three substrates A*  B*  C* which relax through 𝑇1 processes to form a pool of non-polarized 552 

substrates A  B  C, as shown in Fig. 5(a). This is analogous to a system where a solution of hyperpolarized 553 

solute A* is introduced into the extracellular medium in a cell suspension, is transported into the cells where it is 554 

denoted by 𝐵∗ and it is subsequently acted upon by an enzyme to form 𝐶∗. The system of differential equations 555 

that describe the kinetics of this scheme is: 556 

 557 

 
𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐴

∗(𝑡) + 𝑘−1𝐵
∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , (41) 

 
𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐴

∗(𝑡) − 𝑘−1𝐵
∗(𝑡) − 𝑘2𝐵

∗(𝑡) + 𝑘−2𝐶
∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , (42) 

 
𝑑𝐶∗(𝑡)

𝑑𝑡
= 𝑘2𝐵

∗(𝑡) − 𝑘−2𝐶
∗(𝑡) − 𝑅1

𝐶𝐶∗(𝑡)    , (43) 

 
𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐴(𝑡) + 𝑘−1𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (44) 

 
𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐴(𝑡) − 𝑘−1𝐵(𝑡) − 𝑘2𝐵(𝑡) + 𝑘−2𝐶(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    ,    (45) 

 𝑑𝐶(𝑡)

𝑑𝑡
= 𝑘2𝐵(𝑡) − 𝑘−2𝐶(𝑡) + 𝑅1

𝐶𝐶∗(𝑡)    , (46) 

 558 

where we have removed the square brackets that denote molar concentration to avoid some of the clutter. 559 

However, it is important to recall that there is a factor that relates magnetization to concentration, and this is 560 

estimated from the known initial experimental conditions. 561 

 Equations (41-46) can be recast in matrix form to give: 562 

 563 
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 564 

 

Figure 5 Simulated first order three-site exchange kinetics of hyperpolarized solutes, A  B  C, conforming to 

conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation 

rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 = 𝑅1
𝐶 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡), 𝐵(𝑡), 𝐶∗(𝑡) and 𝐶(𝑡) (left 

panel) were calculated numerically using Eq. (41-46) with rate constants (b) 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0 𝑠−1, 

corresponding to uni-directional kinetics, (c) 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0. 005 𝑠−1 and (d) 𝑘1 = 𝑘2 = 𝑘−1 =

𝑘−2 = 0.01 𝑠−1, corresponding to exchange kinetics. The right panel shows plots of the time dependence of 𝐴∗(𝑡) +

𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and 𝐶∗(𝑡) + 𝐶(𝑡) = [𝐶(𝑡)]. 

https://doi.org/10.5194/mr-2021-14

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 16 February 2021
c© Author(s) 2021. CC BY 4.0 License.



22 
 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡) ]
 
 
 
 
 

=

[
 
 
 
 
 
 
−𝑘1 − 𝑅1

𝐴 𝑘−1 0 0 0 0

𝑘1 −𝑘−1 − 𝑘2 − 𝑅1
𝐵 𝑘−2 0 0 0

0 𝑘2 −𝑘−2 − 𝑅1
𝐶 0 0 0

𝑅1
𝐴 0 0 −𝑘1 𝑘−1 0

0 𝑅1
𝐵 0 𝑘1 −𝑘−1 − 𝑘2 𝑘−2

0 0 𝑅1
𝐶 0 𝑘2 −𝑘−2]

 
 
 
 
 
 

[
 
 
 
 
 
𝐴∗(𝑡)

𝐵∗(𝑡)

𝐶∗(𝑡)

𝐴(𝑡)

𝐵(𝑡)

𝐶(𝑡) ]
 
 
 
 
 

    . (47) 

 565 

It is readily verified that Eq. (47) satisfies conservation of mass, since the rate of change (𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) +566 

𝐵(𝑡) + 𝐶∗(𝑡) + 𝐶(𝑡))/𝑑𝑡 = 0.  567 

 Equations (41-46) can be re-written in matrix-vector form as: 568 

 569 

𝑑

𝑑𝑡
[

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶∗(𝑡) + 𝐶(𝑡)
] = [

−𝑘1 𝑘−1 0
𝑘1 −𝑘−1 − 𝑘2 𝑘−2

0 𝑘2 −𝑘−2

] [

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶∗(𝑡) + 𝐶(𝑡)
]    , (48) 

 570 

Therefore, provided 𝐴∗(0) + 𝐴(0) = [𝐴]0, 𝐵∗(0) + 𝐵(0) = [𝐵]0 and 𝐶∗(0) + 𝐶(0) = [𝐶]0, then 𝐴∗(𝑡) +571 

𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and 𝐶∗(𝑡) + 𝐶(𝑡) = [𝐶(𝑡)], respectively.  572 

Figure 5 shows the results of numerical integration of Eq. (47) with initial magnetization vector 𝐌(0) =573 

[1, 0, 0, 0, 0, 0] that corresponds to having only hyperpolarized A*(0) = 1 and longitudinal relaxation rate constants 574 

𝑅1
𝐴 = 𝑅1

𝐵 = 𝑅1
𝐶 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡), 𝐵(𝑡), 𝐶∗(𝑡) and 𝐶(𝑡) were calculated 575 

(left panel) for different rate constants: Fig. 5(b), 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0 𝑠−1, corresponding to uni-576 

directional kinetics; Fig. 5(c), 𝑘1 = 𝑘2 = 0.01 𝑠−1, 𝑘−1 = 𝑘−2 = 0. 005 𝑠−1, corresponding to bi-directional 577 

exchange kinetics; and Fig. 5(d), 𝑘1 = 𝑘2 = 𝑘−1 = 𝑘−2 = 0.01 𝑠−1, also corresponding to bi-directional 578 

exchange kinetics. The right column shows plots of the time dependence of 𝐴∗(𝑡) + 𝐴(𝑡), 𝐵∗(𝑡) + 𝐵(𝑡) and 579 

𝐶∗(𝑡) + 𝐶(𝑡), which reproduce the conventional chemical kinetics of [𝐴(𝑡)], [𝐵(𝑡)] and [𝐶(𝑡)], as required for 580 

mathematical and physical consistency. 581 

 582 

4.3 Second-order kinetics of hyperpolarized substrates 583 

We now describe hyperpolarized substrates 𝐴∗(𝑡) and 𝐵∗(𝑡) reacting with non-hyperpolarized substrates [𝐶(𝑡)] 584 

and [𝐷(𝑡)]. The system of differential equations that describes these second-order kinetics of A* + C  B* + D 585 

with only the hyperpolarized pools relaxing through 𝑇1 processes to form a pool of non-polarized substrates A + 586 

C  B + D. The reactant concentrations [𝐶(𝑡)] and [𝐷(𝑡)] are common to both pools, as shown in Fig. 6(a). The 587 

relevant system of differential equations (again omitting the square brackets that denote concentration) is: 588 

 589 

 
𝑑𝐴∗(𝑡)

𝑑𝑡
= −𝑘1𝐶(𝑡) 𝐴∗(𝑡) + 𝑘−1𝐷(𝑡) 𝐵∗(𝑡) − 𝑅1

𝐴𝐴∗(𝑡)    , (49) 

 
𝑑𝐵∗(𝑡)

𝑑𝑡
= 𝑘1𝐶(𝑡) 𝐴∗(𝑡) − 𝑘−1𝐷(𝑡) 𝐵∗(𝑡) − 𝑅1

𝐵𝐵∗(𝑡)    , (50) 
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𝑑𝐴(𝑡)

𝑑𝑡
= −𝑘1𝐶(𝑡) 𝐴(𝑡) + 𝑘−1𝐷(𝑡)𝐵(𝑡) + 𝑅1

𝐴𝐴∗(𝑡)    , (51) 

 
𝑑𝐵(𝑡)

𝑑𝑡
= 𝑘1𝐶(𝑡) 𝐴(𝑡) − 𝑘−1𝐷(𝑡) 𝐵(𝑡) + 𝑅1

𝐵𝐵∗(𝑡)    , (52) 

 
𝑑[𝐶(𝑡)]

𝑑𝑡
= −𝑘1𝐶(𝑡) (𝐴∗(𝑡) + 𝐴(𝑡)) + 𝑘−1𝐷(𝑡) (𝐵∗(𝑡) + 𝐵(𝑡))    , (53) 

 
𝑑[𝐷](𝑡)

𝑑𝑡
= 𝑘1𝐶(𝑡) (𝐴∗(𝑡) + 𝐴(𝑡)) − 𝑘−1𝐷(𝑡) (𝐵∗(𝑡) + 𝐵(𝑡))    . (54) 

 590 

As was done above with sets of simultaneous differential equations, Eqs. (49-54) can be cast into matrix-vector 591 

form: 592 

 593 

𝑑

𝑑𝑡
[

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡)

] =

[
 
 
 
−𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0

−𝑘1𝐶(𝑡) 𝑘−1𝐷(𝑡) 0 0

𝑘1𝐶(𝑡) −𝑘−1𝐷(𝑡) 0 0]
 
 
 

[

𝐴∗(𝑡) + 𝐴(𝑡)

𝐵∗(𝑡) + 𝐵(𝑡)

𝐶(𝑡)

𝐷(𝑡)

]    . (55) 

  594 

Again, mass is conserved as seen by the fact that 𝑑((𝐴∗(𝑡) + 𝐴(𝑡) + 𝐵∗(𝑡) + 𝐵(𝑡))/𝑑𝑡 = 0 and 𝑑(𝐶(𝑡) +595 

𝐷(𝑡))/𝑑𝑡 = 0. Also, recall that provided 𝐴∗(0) + 𝐴(0) = [𝐴]0, 𝐵∗(0) + 𝐵(0) = [𝐵]0, 𝐶(0) = [𝐶]0 and 𝐷(0) =596 

[𝐷]0, then we can make use of the equalities 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)], 𝐶(𝑡) = [𝐶(𝑡)] and 597 

𝐷(𝑡) = [𝐷(𝑡)], respectively. It is now very evident why we must equate the initial signal with the concentration 598 

via an experimentally estimated scaling factor. 599 

Figure 6 shows numerical simulations of the time evolution of the system of Eqs. (49-54) with initial 600 

magnetization corresponding to the hyperpolarized signal A*(0) = 1 and non-polarized substrates 𝐶(0) = 0.95 601 

and 𝐷(0) = 0.05. The longitudinal relaxation rate constants were 𝑅1𝐴 = 𝑅1𝐵 = 1/60𝑠−1. The time dependence 602 

of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) are subject to second order kinetics and were calculated numerically (left panel) 603 

for different rate constants: Fig. 6(b), 𝑘1 = 0.01 𝑠−1, 𝑘−1 = 0 𝑠−1, corresponding to unidirectional kinetics; Fig. 604 

6(c), 𝑘1 = 0.01 𝑠−1, 𝑘−1 = 0.005 𝑠−1, corresponding to bi-directional exchange kinetics with an equilibrium 605 

constant K = 2; and Fig. 6(d) 𝑘1 = 𝑘−1 = 0.01 𝑠−1, with an equilibrium constant K = 1, also corresponding to bi-606 

directional exchange kinetics. The right column shows plots of the time dependence of 𝐴∗(𝑡) + 𝐴(𝑡), 𝐵∗(𝑡) +607 

𝐵(𝑡), which capture conventional chemical kinetics of the concentrations of [𝐴(𝑡)] and [𝐵(𝑡)], as required, as 608 

well as the kinetics of the non-polarized reactants [𝐶(𝑡)] and [𝐷(𝑡)].  609 

 610 

4.3.1 An Ersatz solution 611 

The system of differential equations in Eq. (55), describing a second order reaction can be reduced to one with 612 

pseudo first order kinetics by introducing time-dependent rate constants 𝑘1
′ (𝑡) = 𝑘1𝐶(𝑡) and 𝑘−1

′ (𝑡) = 𝑘−1 𝐷(𝑡). 613 

Importantly, the pseudo first order rate constants 𝑘1
′ (𝑡) and 𝑘−1

′ (𝑡) are now time dependent. This approach has 614 
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been used previously (Mariotti et al., 2016) but it constitutes a special case of the more general method described 615 

here, which we advocate. 616 

 617 

 618 

  619 

 

Figure 6 Simulated second order exchange kinetics of hyperpolarized solutes, A* + C  B* + D, conforming to 

conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝐴∗(0) = 1. Longitudinal relaxation 

rate constants were 𝑅1
𝐴 = 𝑅1

𝐵 = 1/60𝑠−1. The time dependence of 𝐴∗(𝑡), 𝐴(𝑡), 𝐵∗(𝑡) and 𝐵(𝑡) were simulated (left panel) 

using Eqs. (49-54) with rate constants (b) 𝑘1 = 0.01 𝑠−1, 𝑘−1 = 0 𝑠−1, corresponding to uni-directional kinetics (c) 𝑘1 =

0.01 𝑠−1, 𝑘−1 = 0.005 𝑠−1and (d) 𝑘1 = 𝑘−1 = 0.01 𝑠−1, corresponding to exchange kinetics. The right panel shows plots 

of the time dependence of 𝐴∗(𝑡) + 𝐴(𝑡) = [𝐴(𝑡)], 𝐵∗(𝑡) + 𝐵(𝑡) = [𝐵(𝑡)] and non-polarized reactants [𝐶(𝑡)] and [𝐷(𝑡)]. 
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5 Michaelis-Menten equation for a hyperpolarized substrate 620 

Next consider an enzyme catalysed reaction with a hyperpolarized substrate. The simplest model 621 

involves a hyperpolarized substrate 𝑆∗(𝑡) that is in equilibrium with a free enzyme of concentration [𝐸]0 to form 622 

a hyperpolarized enzyme substrate complex 𝐸𝑆∗(𝑡), which then reacts to form a hyperpolarized product P*(t). 623 

This is followed by release of the free enzyme that is then available for further reactions: E + S*  ES*  P* + 624 

E. All hyperpolarized substrates relax through 𝑇1 processes to form non-polarized pools of substrates E + S  ES 625 

 P + E as shown in Fig. 7(a). The differential equations (again omitting the square brackets denoting 626 

concentration) that describe the reaction kinetics are: 627 

 628 

 
𝑑𝑆∗(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑆∗(𝑡) + 𝑘−1𝐸𝑆∗(𝑡) − 𝑅1

𝑆𝑆∗(𝑡)    , (56) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑆(𝑡) + 𝑘−1𝐸𝑆(𝑡) + 𝑅1

𝑆𝑆∗(𝑡)    , (57) 

 
𝑑𝐸𝑆∗(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑆∗(𝑡) − 𝑘−1𝐸𝑆∗(𝑡) − 𝑘2𝐸𝑆∗(𝑡) + 𝑘−2𝐸(𝑡)𝑃∗(𝑡) − 𝑅1

𝐸𝑆𝐸𝑆∗(𝑡)    , (58) 

 
𝑑𝐸𝑆(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑆(𝑡) − 𝑘−1𝐸𝑆(𝑡) − 𝑘2𝐸𝑆(𝑡) + 𝑘−2𝐸(𝑡)𝑃(𝑡) + 𝑅1

𝐸𝑆𝐸𝑆∗(𝑡)    , (59) 

 
𝑑𝑃∗(𝑡)

𝑑𝑡
= 𝑘2𝐸𝑆∗(𝑡) − 𝑘−2𝐸(𝑡)𝑃∗(𝑡) − 𝑅1

𝑃𝑃∗(𝑡)    , (60) 

 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝑘2𝐸𝑆(𝑡) − 𝑘−2𝐸(𝑡)𝑃(𝑡) + 𝑅1

𝑃𝑃∗(𝑡)    , (61) 

 
𝑑𝐸(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)(𝑆∗(𝑡) + 𝑆(𝑡)) + (𝑘−1 + 𝑘2)(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)) − 𝑘−2𝐸(𝑡)(𝑃∗(𝑡) + 𝑃(𝑡))    , (62) 

 629 

where 𝐸(𝑡) is the free enzyme, 𝐸𝑆(𝑡) is the enzyme-substrate complex, 𝑆(𝑡) is the free substrate and 𝑃(𝑡) is the 630 

free product, with relaxation rate constants 𝑅1
𝑆, 𝑅1

𝐸𝑆 and 𝑅1
𝑃, respectively. Note the appearance of the free enzyme 631 

E(t) as both a reactant and product; it is regenerated through the reactions that are characterized by the rate 632 

constants 𝑘1 and 𝑘−1, and also 𝑘2 and 𝑘−2, thereby being recycled. 633 

Mass is conserved as confirmed by the fact that 𝑑(𝑆∗(𝑡) + 𝑆(𝑡) + 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) + 𝑃∗(𝑡) + 𝑃(𝑡))/634 

𝑑𝑡 = 0 and 𝑑(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) + 𝐸(𝑡))/𝑑𝑡 = 0. Therefore, provided 𝑆∗(0) + 𝑆(0) = [𝑆]0, 𝐸𝑆∗(0) + 𝐸𝑆(0) =635 

[𝐸𝑆]0 and 𝑃∗(0) + 𝑃(0) = [𝑃]0 then 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)], 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and 𝑃∗(𝑡) + 𝑃(𝑡) =636 

[𝑃(𝑡)], respectively. 637 

 638 

  639 
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5.1 Steady state of ES complex 640 

A simplified uni-directional enzyme catalysed reaction is described by setting the reverse rate constant 641 

𝑘−2 = 0 (see Fig. 7(a)). If it is assumed that a steady-state of [ES] is attained very rapidly then 642 

𝑑(𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡))/𝑑𝑡 = 0 and we obtain (reverting to using square brackets to denote molar concentration): 643 

 644 

 𝑘1[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)] = (𝑘−1 + 𝑘2)[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]    . (63) 

 645 

Rearranging Eq. (63) yields the Michaelis constant in terms of hyperpolarized and non-polarized pools of 646 

substrate: 647 

 648 

 
𝐾𝑀 =

(𝑘−1 + 𝑘2)

𝑘1

=
[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)]

[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]
    . (64) 

 649 

Calibrating the signals to molar concentrations is important since the signals now relate to a real parameter (𝐾𝑀) 650 

of the enzyme that has units of concentration (typically mM).  651 

Thus, using conservation of enzyme mass, the free enzyme concentration is given by: 652 

 653 

 [𝐸(𝑡)] = [𝐸]0 − [𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)]   . (65) 

 654 

Then 655 

 656 

 𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])

𝑑𝑡
=

𝑘2[𝐸]0 [𝑆
∗(𝑡) + 𝑆(𝑡)]

𝐾𝑀 + [𝑆∗(𝑡) + 𝑆(𝑡)]
    . (66) 

 657 

In other words, this is the standard form of the Michaelis-Menten equation written as a function of both polarized 658 

and unpolarized pools of substrate. 659 

 660 

5.2 Simulations of Michaelis-Menten reaction 661 

Figure 7(b-c) shows the results of numerical integration of Eqs. (56-62) with an initial hyperpolarized 662 

signal 𝑆∗(0) = 0.001  (corresponding to a concentration [𝑆]0 = 1 mM via the experimentally determined scaling 663 

factor, which here was set to 1) and enzyme concentration [𝐸]0 = 1 × 10−9 M. The assigned longitudinal 664 

relaxation rate constants were 𝑅1𝑆 = 𝑅1𝐸𝑆 = 𝑅1𝑃 = 1/60𝑠−1. In the first instance, we set the longitudinal 665 

relaxation times of substrate, enzyme-substrate complex and product to be equal (this is discussed further below). 666 

The reaction rate constants were 𝑘1 = 1 × 107 𝑠−1, 𝑘−1 = 1 × 102 𝑠−1, 𝑘2 = 5 × 103 𝑠−1, 𝑘−2 = 0 𝑠−1, such 667 

that 𝐾𝑀 = 5.1 × 10−4 𝑀 and 𝑉𝑚𝑎𝑥 = 5 × 10−6 𝑀 𝑠−1. The time dependences of 𝑆∗(𝑡), 𝑆(𝑡), 𝑃∗(𝑡) and 𝑃(𝑡) are 668 

shown in Fig. 7(b), left panel, subject to standard uni-directional Michaelis-Menten kinetics; and in Fig. 7(c), left 669 

panel, the time dependence of 𝐸𝑆∗(𝑡) and 𝐸𝑆(𝑡). The time dependence of 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)] and 𝑃∗(𝑡) +670 
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𝑃(𝑡) = [𝑃(𝑡)] are shown in Fig. 7(b), right panel, and 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and [𝐸(𝑡)] are shown in Fig. 671 

7(c), right panel, which recapture conventional chemical kinetics of [𝑆(𝑡)], [𝐸𝑆(𝑡)], [𝑃(𝑡)] and [𝐸(𝑡)], as required 672 

for mathematical and physical consistency. 673 

 674 

  675 

 

Figure 7 Simulated Michaelis-Menten kinetics for exchange of hyperpolarized solutes E + S*  ES*  P* + E conforming 

to conservation of mass, assuming initial hyperpolarized magnetization of only solute 𝑆∗(0) = 0.001 and [𝐸]0 =

1 × 10−9 M. Longitudinal relaxation rate constants were 𝑅1𝑆 = 𝑅1𝐸𝑆 = 𝑅1𝑃 = 1/60𝑠−1. The reaction rate constants were 

𝑘1 = 1 × 107 𝑠−1, 𝑘−1 = 1 × 102 𝑠−1, 𝑘2 = 5 × 103 𝑠−1 and 𝑘−2 = 0 𝑠−1, such that 𝐾𝑀 = 5.1 × 10−4 𝑀 and 𝑉𝑚𝑎𝑥 =

5 × 10−6 𝑀 𝑠−1. Left panels: (b) Simulated time dependence of 𝑆∗(𝑡), 𝑆(𝑡), 𝑃∗(𝑡) and 𝑃(𝑡); and (c) simulated time 

dependence of 𝐸𝑆∗(𝑡) and 𝐸𝑆(𝑡). Right panels: (b) simulated time dependence of 𝑆∗(𝑡) + 𝑆(𝑡) = [𝑆(𝑡)] and 𝑃∗(𝑡) +

𝑃(𝑡) = [𝑃(𝑡)]; and (c) 𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡) = [𝐸𝑆(𝑡)] and [𝐸(𝑡)]. 
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It is worth considering some of the consequences of Eq. (66) when studying enzyme mediated reactions 676 

with hyperpolarized substrates. When the substrate concentration [𝑆∗(𝑡) + 𝑆(𝑡)] is much greater than 𝐾𝑀 then the 677 

rate of product formation 𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])/𝑑𝑡 is given by 𝑣 = 𝑘2[𝐸]0 = 𝑉𝑚𝑎𝑥, which is constant (i.e., it is 678 

effectively a zero order reaction with respect to substrate concentration). The enzyme is said to be saturated; its 679 

rate is independent of substrate concentration but 𝑉𝑚𝑎𝑥 is proportional to the enzyme concentration [𝐸]0. When 680 

the substrate concentration [𝑆∗(𝑡) + 𝑆(𝑡)] is much less than 𝐾𝑀 then the rate of product formation 681 

𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])/𝑑𝑡 is given by 𝑉 = 𝑘2[𝐸]0[𝑆
∗(𝑡) + 𝑆(𝑡)]/𝐾𝑀 and the reaction is effectively first order with 682 

respect to substrate concentration. Nevertheless, the rate is still proportional to [𝐸]0. The kinetics of enzyme 683 

systems, and indeed enzyme kinetics in general, are a composite of the two parameters KM
 and Vmax. The influences 684 

on one cannot be distinguished from the other on the basis of time-course experiments alone; separate 685 

measurements that are needed to estimate the total enzyme concentration. 686 

Further simulations were performed to explore the influence of a much shorter value of 𝑇1
𝐸𝑆 for the 687 

enzyme substrate complex, while 𝑇1
𝑆 and 𝑇1

𝑃  were unchanged. Even if it were assumed to be very small viz., 688 

𝑇1
𝐸𝑆 = 276.4 ms the time evolution was indistinguishable from that presented in Fig. 7; the corresponding curves 689 

were superimposable. The signal that resided on the enzyme substrate complex 𝐸𝑆∗ was 6 orders of magnitude 690 

lower than that of the substrate 𝑆∗ and product 𝑃∗. Therefore, the kinetics of signal evolution were dominated by 691 

𝑇1
𝑆 and 𝑇1

𝑃 while changes in 𝑇1
𝐸𝑆 could be ignored. An exception to this analysis might occur if the active site were 692 

next to a paramagnetic centre, such as is found in metalloproteins for which 𝑇1
𝐸𝑆 could be very much shorter than 693 

predicted (see the relaxation theory section above}. 694 

 695 

5.3 Enzyme inhibition and hyperpolarized substrate kinetics 696 

Our formalism can be readily extended to account for the influence of a ligand/solute to inhibit an 697 

enzyme. The simplest case is when a solute binds reversibly to the free enzyme E to form an enzyme inhibitor 698 

complex EI; hence, the enzyme becomes unable to bind and react with its substrate S. To describe this scenario, 699 

Eq. 45 is modified to include an additional pathway for the loss of free enzyme: 700 

 701 

 
𝑑[𝐸(𝑡)]

𝑑𝑡
= −𝑘1[𝐸(𝑡)][𝑆∗(𝑡) + 𝑆(𝑡)] + (𝑘−1 + 𝑘2)[𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)] − 𝑘−2[𝐸(𝑡)][𝑃∗(𝑡) + 𝑃(𝑡)]

− 𝑘3[𝐸(𝑡)][𝐼(𝑡)] + 𝑘−3[𝐸𝐼(𝑡)]    . 

(67) 

 702 

The model is now extended to include differential equations describing the concentration of the inhibitor [𝐼(𝑡)] 703 

and the enzyme-inhibitor complex [𝐸𝐼(𝑡)]: 704 

 705 

 
𝑑[𝐼(𝑡)]

𝑑𝑡
= −𝑘3[𝐸(𝑡)][𝐼(𝑡)] + 𝑘−3[𝐸𝐼(𝑡)]    , 

 (68) 

 

 
𝑑[𝐸𝐼(𝑡)]

𝑑𝑡
= 𝑘3[𝐸(𝑡)][𝐼(𝑡)] − 𝑘−3[𝐸𝐼(𝑡)]    . 

(69) 

 

Such equations can be incorporated into the Michaelis-Menten equations and we develop this next. 706 
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5.3.1 Types of enzyme inhibition 707 

There are three commonly encountered types of reversible enzyme inhibition (Kuchel, 2009): (i) a competitive 708 

inhibitor is structurally similar to the substrate and binds preferentially in the active site of the free enzyme, E, 709 

thus preventing the substrate from binding and reacting; (ii) an uncompetitive inhibitor binds only to the enzyme-710 

substrate complex and therefore causes substrate-concentration dependent inhibition; and (iii), a non-competitive 711 

inhibitor binds to both the free enzyme and to the enzyme-substrate complex; it causes a conformational change 712 

at the active site that inhibits (or even enhances) the reaction. Such an effect is referred to as allosteric inhibition 713 

(or activation). 714 

Accounting for all three scenarios, the free enzyme concentration is given by: 715 

 716 

 [𝐸(𝑡)] = [𝐸]0 − [𝐸𝐼(𝑡)] − [𝐸𝑆∗(𝑡) + 𝐸𝑆(𝑡)] − [𝐸𝑆𝐼∗(𝑡) + 𝐸𝑆𝐼(𝑡)]   . (70) 

 717 

Substituting:  718 

 719 

 
𝛼 = 1 +

[𝐼(𝑡)]

𝐾𝐼

   and   𝛼′ = 1 +
[𝐼(𝑡)]

𝐾𝐼′
    , (71) 

 720 

where 𝐾𝐼 = [𝐸(𝑡)][𝐼(𝑡)]/[𝐸𝐼(𝑡)] and 𝐾𝐼
′ = [𝐸𝑆(𝑡)][𝐼(𝑡)]/[𝐸𝑆𝐼(𝑡)], yields: 721 

 722 

 

 

𝑑([𝑃∗(𝑡) + 𝑃(𝑡)])

𝑑𝑡
=

𝑘2[𝐸]0[𝑆
∗(𝑡) + 𝑆(𝑡)]

𝛼𝐾𝑀 + 𝛼′[𝑆∗(𝑡) + 𝑆(𝑡)]
    . (72) 

 723 

The three types of enzyme inhibition can be distinguished by their influence on the kinetic parameters that are 724 

estimated in specially designed experiments performed on the enzyme over a range of substrate and inhibitor 725 

concentrations (Kuchel, 2009): (i) competitive inhibitors cause an increase in apparent KM value while Vmax is 726 

unchanged; (ii) uncompetitive inhibitors cause a reduction in 𝑉𝑚𝑎𝑥 while the apparent 𝐾𝑀 is unchanged; and (iii) 727 

non-competitive inhibitors cause both a reduction in 𝑉𝑚𝑎𝑥 and an increase in apparent 𝐾𝑀.  728 

An additional effect that can be considered is where either the substrate of the reaction [𝑆(𝑡)], or the 729 

product of the reaction, [𝑃(𝑡)], acts as the inhibitor, called unsurprisingly ‘substrate inhibition’ and ‘product 730 

inhibition’, respectively. The relevant enzyme kinetic equations are composed by substituting [𝐼(𝑡)] =731 

[𝑆∗(𝑡) + 𝑆(𝑡)] or [𝐼(𝑡)] = [𝑃∗(𝑡) + 𝑃(𝑡)] in the above equations (refs). 732 

 733 

6 Cofactors and unlabelled pools – Lactate Dehydrogenase 734 

We now consider a real system that is of contemporary interest for in vivo clinical studies using dDNP. 735 

It is lactate dehydrogenase (E.C. 1.1.1.27). Consider the LDH catalysed reaction of a hyperpolarized substrate; it 736 

follows an ordered sequential reaction in which E + NADH  E·NADH + Pyr*  E·NAD + Lac*  E + NAD+. 737 

Again, we assume that relaxation of magnetization occurs through T1 processes to form a pool of reactants E + 738 

https://doi.org/10.5194/mr-2021-14

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 16 February 2021
c© Author(s) 2021. CC BY 4.0 License.



30 
 

NADH  E·NADH + Pyr  E·NAD + Lac  E + NAD+ as shown in Fig. 8(a). The relevant differential 739 

equations used to describe the kinetics are (omitting the square brackets that denote concentration): 740 

 741 

 
𝑑𝑃𝑦𝑟∗(𝑡)

𝑑𝑡
= −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟∗(𝑡) + 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐∗(𝑡) − 𝑅1

𝑃𝑃𝑦𝑟∗(𝑡)    , (73) 

 
𝑑𝑃𝑦𝑟(𝑡)

𝑑𝑡
= −𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟(𝑡) + 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐(𝑡) + 𝑅1

𝑃𝑃𝑦𝑟∗(𝑡)    , (74) 

 
𝑑𝐿𝑎𝑐∗(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟∗(𝑡) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐∗(𝑡) − 𝑅1

𝐿𝐿𝑎𝑐∗(𝑡)    , (75) 

 
𝑑𝐿𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)𝑃𝑦𝑟(𝑡) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)𝐿𝑎𝑐(𝑡) + 𝑅1

𝐿𝐿𝑎𝑐∗(𝑡)    , (76) 

 
𝑑𝑁𝐴𝐷𝐻(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) + 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡)    , (77) 

𝑑𝑁𝐴𝐷(𝑡)

𝑑𝑡
= 𝑘3𝐸.𝑁𝐴𝐷(𝑡) − 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , (78) 

𝑑𝐸.𝑁𝐴𝐷𝐻(𝑡)

𝑑𝑡
= 𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) − 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡) − 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡))

+ 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)(𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))    , 

(79) 

𝑑𝐸.𝑁𝐴𝐷(𝑡)

𝑑𝑡
= 𝑘2𝐸.𝑁𝐴𝐷𝐻(𝑡)(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡)) − 𝑘−2𝐸.𝑁𝐴𝐷(𝑡)(𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))

− 𝑘3𝐸.𝑁𝐴𝐷(𝑡) + 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , 

(80) 

𝑑𝐸(𝑡)

𝑑𝑡
= −𝑘1𝐸(𝑡)𝑁𝐴𝐷𝐻(𝑡) + 𝑘−1𝐸.𝑁𝐴𝐷𝐻(𝑡) + 𝑘3𝐸.𝑁𝐴𝐷(𝑡) − 𝑘−3𝐸(𝑡)𝑁𝐴𝐷(𝑡)    , (81) 

 742 

where 𝐸(𝑡) is the concentration of free enzyme, 𝑁𝐴𝐷(𝑡) and 𝑁𝐴𝐷𝐻(𝑡) are the concentrations of the free co-743 

factors, 𝐸.𝑁𝐴𝐷(𝑡) and 𝐸.𝑁𝐴𝐷𝐻(𝑡) are the concentrations of the enzyme-cofactor complexes and 𝑃𝑦𝑟(𝑡) and 744 

𝐿𝑎𝑐(𝑡) are the free substrates with relaxation rate constants 𝑅1
𝑃 and 𝑅1

𝐿, respectively. 745 

Mass is conserved as is confirmed by the fact that 𝑑(𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) + 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡))/𝑑𝑡 = 0. 746 

Enzyme concentration is conserved as is confirmed by 𝑑(𝐸. 𝑁𝐴𝐷𝐻(𝑡) + 𝐸.𝑁𝐴𝐷(𝑡) + 𝐸(𝑡))/𝑑𝑡 = 0 and 747 

cofactor pools are conserved as is confirmed by 𝑑(𝑁𝐴𝐷𝐻(𝑡) + 𝑁𝐴𝐷(𝑡) + 𝐸.𝑁𝐴𝐷𝐻(𝑡) + 𝐸.𝑁𝐴𝐷(𝑡))/𝑑𝑡 = 0. 748 

Therefore, provided 𝑃𝑦𝑟∗(0) + 𝑃𝑦𝑟(0) = [𝑃𝑦𝑟]0 and 𝐿𝑎𝑐∗(0) + 𝐿𝑎𝑐(0) = [𝐿𝑎𝑐]0 then 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) =749 

[𝑃𝑦𝑟(𝑡)] and  𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], respectively. 750 

Figure 8(b) shows numerical simulations of the time evolution of the system that is described by Eqs. 751 

(73-81) with initial hyperpolarized signal/concentration (see above for a comment on this aspect) 𝑃𝑦𝑟∗(𝑡) =752 

0.001 and longitudinal relaxation rate constants 𝑅1
𝑃 = 𝑅1

𝐿 = 1/60s−1. The kinetic parameters used for lactate 753 

dehydrogenase were as previously published (Witney et al., 2011; Zewe and Fromm, 1962) for the rabbit muscle 754 

enzyme. Enzyme concentration was [𝐸]0 = 1.2 × 10−9 M and rate constants 𝑘1 = 1.03 × 108 𝑠−1, 𝑘−1 =755 

549 𝑠−1, 𝑘2 = 6.72 × 106 𝑠−1, 𝑘−2 = 3.44 × 104 𝑠−1, 𝑘3 = 842 𝑠−1, and 𝑘−3 = 9.12 × 105 𝑠−1. Initial 756 
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cofactor concentrations were [𝑁𝐴𝐷𝐻(0)] = 1.0 × 10−4 M and [𝑁𝐴𝐷(0)] = 1.0 × 10−3 M to give a [𝑁𝐴𝐷]/757 

[𝑁𝐴𝐷𝐻] ratio of 10. In the first instance, endogenous pools of hyperpolarized lactate were set to 𝐿𝑎𝑐∗(0) = 0 , 758 

and unpolarized pools of both pyruvate and lactate were made zero, viz., 𝑃𝑦𝑟(0) = 0 and 𝐿𝑎𝑐(0) = 0. 759 

 760 

 761 

 

Figure 8 Simulated kinetics of lactate dehydrogenase for exchange of solutes, E + NADH  E·NADH + Pyr*  E·NAD 

+ Lac*  E + NAD+, conforming to conservation of mass, assuming initial hyperpolarized magnetization of only solute 

𝑃𝑦𝑟∗(0) = 0.001 and [𝐸]0 = 1.2 × 10−9 M. Longitudinal relaxation rate constants were 𝑅1
𝑃 = 𝑅1

𝐿 = 1/60s−1. Rate 

constants were 𝑘1 = 1.03 × 108 𝑠−1, 𝑘−1 = 549 𝑠−1, 𝑘2 = 6.72 × 106 𝑠−1, 𝑘−2 = 3.44 × 104 𝑠−1, 𝑘3 = 842 𝑠−1 and 

𝑘−3 = 9.12 × 105 𝑠−1. Initial cofactor concentrations were [𝑁𝐴𝐷𝐻(0)] = 1.0 × 10−4 M and [𝑁𝐴𝐷(0)] = 1.0 ×

10−3 M. (b) Simulated time dependence 𝑃𝑦𝑟∗(𝑡), 𝑃𝑦𝑟(𝑡), 𝐿𝑎𝑐∗(𝑡) and 𝐿𝑎𝑐(𝑡) left panel, [𝐸(𝑡)], [𝐸.𝑁𝐴𝐷(𝑡)] and 

[𝐸.𝑁𝐴𝐷𝐻(𝑡)], middle panel, and 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)], 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], [𝑁𝐴𝐷(𝑡)] and 

[𝑁𝐴𝐷𝐻(𝑡)], right panel. (c) Simulations of the time dependence of 𝐿𝑎𝑐∗(𝑡) under the conditions that: [𝐸]0 = (i) 

0.6 × 10−9 M; (ii) 1.2 × 10−9 M; and (iii) 2.4 × 10−9 M, while all other parameters remained unchanged. (d) Simulations 

of the time dependence of 𝐿𝑎𝑐∗(𝑡) under the conditions that: 𝐿𝑎𝑐(0) = (i) 0 mM; (ii) 20 mM; and (iii) 40 mM, while all 

other parameters remained unchanged. 
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The computed time dependence of polarized and unpolarized pools 𝑃𝑦𝑟∗(𝑡), 𝑃𝑦𝑟(𝑡), 𝐿𝑎𝑐∗(𝑡) and 762 

𝐿𝑎𝑐(𝑡) are shown in Fig. 8(b), left panel. The time dependence of [𝐸(𝑡)], [𝐸.𝑁𝐴𝐷(𝑡)] and [𝐸.𝑁𝐴𝐷𝐻(𝑡)] are 763 

shown in Fig. 8(b), middle panel. The time dependence of 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)], 𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) =764 

[𝐿𝑎𝑐(𝑡)], [𝑁𝐴𝐷(𝑡)] and [𝑁𝐴𝐷𝐻(𝑡)] are shown in Fig. 8(b), right panel. Several interesting features are evident. 765 

First, the model predicted the expected time dependences of both hyperpolarized pyruvate 𝑃𝑦𝑟∗(𝑡) and its 766 

conversion to 𝐿𝑎𝑐∗(𝑡). Under the conditions of the simulation, the free enzyme [𝐸(𝑡)] was rapidly depleted to 767 

form an equilibrium of [𝐸.𝑁𝐴𝐷(𝑡)] and [𝐸.𝑁𝐴𝐷𝐻(𝑡)]. During the reaction with 𝑃𝑦𝑟∗(𝑡), the equilibrium 768 

position of the enzyme was altered to give a final equilibrium position that could then be appreciated from the 769 

total pools of 𝑃𝑦𝑟∗(𝑡) + 𝑃𝑦𝑟(𝑡) = [𝑃𝑦𝑟(𝑡)] and  𝐿𝑎𝑐∗(𝑡) + 𝐿𝑎𝑐(𝑡) = [𝐿𝑎𝑐(𝑡)], which predicts a net conversion 770 

of [𝑃𝑦𝑟(𝑡)] to [𝐿𝑎𝑐(𝑡)] of ~10%. 771 

 Finally, we consider real case scenarios that are reported in the literature. Figure 8(c) shows the situation 772 

where the LDH expression level is altered by the progression of disease (LDH expression is known to be 773 

upregulated in more aggressive cancer phenotypes (Albers et al., 2008)) or down regulated during therapy (Ward 774 

et al., 2010), which can be explored through the value of [𝐸]0. Figure 8(c) shows simulations of the 𝐿𝑎𝑐∗(𝑡) signal 775 

under the condition that: [𝐸]0 = (i) 0.6 × 10−9 M; (ii) 1.2 × 10−9 M; and (iii) 2.4 × 10−9 M, while all other 776 

parameters remained unchanged, relative to those used for Fig. 8(b). It is apparent that increased enzyme 777 

expression leads to an increase in the apparent rate of conversion of 𝑃𝑦𝑟∗(𝑡) to 𝐿𝑎𝑐∗(𝑡) even in the absence of a 778 

change in enzyme activity, as seen in real experiments. Another situation that is frequently encountered are 779 

changes in the pool size of endogenous lactate, for example in response to hypoxia, which can be explored through 780 

the parameter 𝐿𝑎𝑐(0). Figure 8(d) shows simulations of the 𝐿𝑎𝑐∗(𝑡) signal under the conditions that: 𝐿𝑎𝑐(0) = 781 

(i) 0 mM; (ii) 20 mM; and (iii) 40 mM, while all other parameters remained unchanged, relative to those used to 782 

generate Fig. 8(b). The model therefore predicts that an increased pool of endogenous unpolarized lactate leads to 783 

an increase in the apparent rate of conversion of 𝑃𝑦𝑟∗(𝑡) to 𝐿𝑎𝑐∗(𝑡), as reported widely in the literature (Day et 784 

al., 2007). 785 

 786 

7 Conclusion 787 

We have described an approach to formulating the kinetic master equations that describe the time evolution of 788 

hyperpolarized 13C NMR signals in reacting (bio)chemical systems, including enzymes with two or more 789 

substrates, and various enzyme reaction mechanisms as classified by Cleland. The modelling can be the basis of 790 

simulating many pertinent features that are seen in dDNP experiments. Derivation of the Michaelis-Menten 791 

equation in the context of dDNP experiments illustrates why formation of a hyperpolarized enzyme-substrate 792 

complex does not cause an appreciable loss of the signal from the substrate or product. It was also able to answer 793 

why the concentration of an unlabelled pool of substrate, for example 12C lactate, causes an increase in the rate of 794 

exchange of the 13C labelled pool, and to what extent the equilibrium position of an enzyme-catalyzed reaction, 795 

for example LDH, is altered upon adding hyperpolarized substrate. The formalism described here should 796 

contribute to a fuller mechanistic understanding of the time courses derived from dDNP experiments and will be 797 

relevant to ongoing clinical applications using dDNP. 798 
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